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ABSTRACT 

QIONG, ZHANG. Development of SUBSPACE-Based Hybrid Monte Carlo-Deterministic 

Algorithms for Reactor Physics Calculations. (Under the direction of Hany Abdel-Khalik.) 

This dissertation develops an innovative hybrid Monte-Carlo-Deterministic (MC-DT) 

method which places high premium on attaining high computational efficiency for reactor 

analysis applications. Over the past few decades, there have been a plethora of techniques 

proposed to enable the hybridization of MC and DT methods with great success primarily for 

shielding applications where one is often interested in estimating the flux at few given points. 

The basic idea is to employ a simplified deterministic model to get an estimate of the flux 

solution, which is subsequently employed to bias the MC particles. In one implementation, 

adjoint deterministic calculations are employed to set weight-windows to accelerate 

convergence of MC simulation. Some progress has been made recently for reactor analysis 

applications where one is interested in calculating the flux distribution everywhere in the 

reactor core, which is much more computationally demanding than shielding applications 

because of the huge increase in the number of responses required. We believe the efficiency 

of these methods however is still too low to enable using MC methods in routine analysis 

calculations where typically one needs to execute the flux solver in the order of 10
3
-10

5
 times. 

To be acceptable to nuclear practitioners, e.g. fuel vendors and utilities, the efficiency of 

hybrid MC-DT needs to method that of existing deterministic methods used for routine 

design calculations. This dissertation contributes a new hybrid method denoted hereinafter by 

the SUBSPACE method, which primarily focuses on improving the efficiency of hybrid 

methods for reactor analysis applications, whereby highly accurate estimates of the energy-

dependent flux are required everywhere in the reactor core, including a detailed pin power 
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distribution for each fuel assembly. The SUBSPACE method achieves its higher 

computational efficiency by taking advantage of the correlations between the responses. 

These correlations are introduced by the physics of radiation transport. Research over the 

past ten years has shown that the effective degrees of freedom in reactor analysis problems 

are very few despite the high dimensionality of the associated models. The SUBSPACE 

method takes advantage of this situation by identifying a small number of degrees of freedom 

towards which the MC particles are biased in a similar manner to existing hybrid methods. 

Significant gains in computational efficiency have been demonstrated using this method. The 

dissertation derives the mathematical theory behind the SUBSPACE method and applies it to 

realistic reactor analysis models. Two different implementations of the SUBSPACE method 

are presented, the first one described above relies on an adjoint deterministic model to 

calculate weight-windows for MC particles biasing. The second one is referred to the 

Gaussian Process (GP) method. The reason for this name is that the responses correlations 

are captured based on the assumption that the responses can be treated as Gaussian processes, 

which is a reasonable assumption for radiation transport. The applicability of the 

SUBSPACE method is also demonstrated for different types of models, including k-

eigenvalue core-wide models, assembly models used for cross-sections homogenization for 

subsequent core-wide calculations, and depletion calculations. Given the favorable results 

obtained here, we believe the applicability of the MC method for large scale reactor analysis 

could be realized over the near future. 
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CHAPTER 1       

INTRODUCTION 

 

The computer simulation of radiation transport within matter is essential to many nuclear 

engineering applications such as reactor physics design calculations, radiation detection 

modeling and shielding design. Fundamentally, there are two distinctive methods for 

modeling radiation transport: the Monte Carlo (MC) and the deterministic (DT) methods. 

While the two methods are both used to simulate the same type of problems, each method 

has its unique advantages and limitations.  

The MC is well known for its ability of modeling basic physical phenomena of radiation 

interactions by making virtually no simplifying modeling assumptions and is considered the 

most accurate method for solving radiation transport problems. However, it is 

computationally very expensive and as of now cannot be applied effectively on a routine 

basis to complete reactor design calculations, where a significant number of executions of the 

computational models are often required. Meanwhile, the DT is superior in its computational 

efficiency enabled by various simplifying assumptions about the physics. The limitation of 

this method is that it is difficult to validate the quality of the assumptions made, and the 

results are therefore often benchmarked against MC calculations, considered to be the gold 

standard for radiation transport. Another limitation of DT methods is that the computational 

cost often goes super linearly with the number of cells in the numerical scheme employed.  

For this reason, it is not possible to use one detailed deterministic model to analyze the entire 
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reactor core even with leadership computers. Reactor physicists have therefore resorted to 

homogenization techniques (described below) to reduce the computational cost. These 

methods make additional assumptions which are typically refined over many years of 

experience.  

The current commercial reactor design process exclusively utilizes deterministic radiation 

transport models in conjunction with homogenization techniques to render computationally 

efficient simulation of the core-wide behavior over the cycles of operation. The reactor 

design process is typically divided into three stages trading off details in the resolution of 

energy and space:  

1. Infinite medium or 1D transport calculation with high energy resolution (either point-

wise of many group representation, e.g. 100s-10000s groups). Cross section 

resonances are explicitly resolved and appropriately self-shielded. The result of this 

stage is a self-shielded cross section set comprised of 10s~100s groups. 

2. The lattice or assembly level calculation solves the 2D transport equation on a 2D 

slice of a single assembly using reflective boundary conditions on all four edges 

which implies the reactor is infinitely loaded with identical assemblies. The flux 

solution is typically obtained using the Method of Collision Probabilities, the Method 

of Characteristic or unstructured SN transport solvers. 

3. The few-group cross section set is used in a core-wide, 3D, coarse mesh diffusion 

calculation.  
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The most attractive feature of MC is its ability to utilize continuous (also referred to as point-

wise) energy-dependent cross sections; thereby removing the errors introduced by the multi-

group method. In addition to that, MC does not suffer from truncation error present in 

deterministic models. Moreover, no assumptions about the boundary conditions of each 

assembly are made. The MC results however are statistical quantities, where the statistical 

fluctuations are described by a standard deviation. For a reliable MC simulation, the standard 

deviation on all quantities of interest must be made very small. Due to the central limit 

theorem, the standard deviation decreases as: 

1
,        

N
                                                       (1) 

where  is the standard deviation and N is the number of executed histories. For example, a 

factor of 10 reduction in standard deviation requires a 100 times more particles to simulate, 

which increases the computational time/cost by the same amount. The standard analog MC 

simulation is therefore considered impractical without applying powerful variance reduction 

techniques. Variance reduction techniques minimize statistical errors e.g. by biasing the MC 

particles towards more important regions in phase space (the basis for importance sampling) 

or by eliminating the fluctuation in the particles weight. 

Since the advent of the MC method, variance reduction techniques have been proposed and 

employed to reduce the statistical uncertainty in the response of interest with a fixed number 

of history.  
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The most widely used variance reduction techniques are Russian Roulette, implicit capture 

and exponential transformation.  For its first couple of decades of application, typical MC 

problems comprised only a small number of responses such that variance reduction 

parameters that are instrumental for the above variance reduction methods could be easily 

devised by hand. However, one typical feature of reactor physics application is that responses 

are sought everywhere in phase-space and therefore the variance reduction must also be 

rendered everywhere, e.g., thermal and fast flux everywhere in the core and throughout 

cycles of depletion; this challenge is known as Global Variance Reduction (GVR).   

Recognizing the advantages and deficiencies of both methods, hybrid MC-DT techniques 

have been proposed by researchers to speed up MC simulation. The essential idea of any 

hybrid technique is to obtain an inexpensive deterministic estimate of the adjoint or forward 

flux; then use the estimate to generate variance reduction parameters for GVR.  Two typical 

examples of hybrid MC-DT techniques for GVR are: importance sampling and weight 

windows.  Importance sampling concentrates on the regions in phase space that are most 

important for the response of interest; weight window controls the particle weight by 

rouletting and splitting based on the weight function that is derived from the deterministic 

estimate of the forward or adjoint flux. Common to all hybrid MC-DT methods, a 

deterministic estimate of the importance function is employed; the difference of hybrid MC- 

DT methods manifests in what type of transport problem is solved (forward, adjoint, etc). 

Hybrid methods have been proven highly effective in speeding up MC computations; in 
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general all hybrid deterministic MC methods address one or several of the following three 

problems that cause poor MC performance in GVR:  

1. Too few particles contribute to the response of interest leading to large relative 

variance; 

2. The magnitude of particle weights that contribute to the response of interest 

fluctuate; 

3. Particles with small weights are retained until collision and cause a waste of 

execution time. 

To overcome the above challenges of current hybrid methods, we present in this work a 

novel hybrid MC-DT method denoted by the SUBSPACE method. The method is based on 

the adjoint function and therefore belongs to the same family as the FW-CADIS method 

developed by the SCALE group at ORNL [33]. For this reason, we employ the FW-CADIS 

method as a basis for comparison. Similar to FW-CADIS, the SUBSPACE method employs 

importance maps obtained from deterministic adjoint models to derive automatic weight-

window biasing. In contrast to FW-CADIS, the SUBSPACE method does not calculate flux-

based weighting of the adjoint source term.  

Instead, it capitalizes on correlations between the responses of interest which are typically 

present in reactor physics models and is highly effective in reducing the execution time 

required for GVR.  An extension of the SUBSPACE method, denoted by Gaussian Process 

(GP), is also presented in this work, which only requires a forward deterministic model when 

adjoint models are not available. 
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This dissertation is organized as follows: In Chapter 2, fundamental deterministic (forward 

and adjoint) and MC theories are reviewed to provide a basic theoretical background on DT 

and MC method; different variance reduction techniques are also included in this Chapter. A 

brief introduction on MC-DT hybrid methods is given and the literatures on various hybrid 

methods developed in the last couple of decades are summarized and reviewed. Chapter 3 

presents the motivation, development and mathematical description of two proposed hybrid 

methods, that is the SUBSPACE and GP methods. In Chapter 4, the performance of proposed 

hybrid methods is demonstrated through a series of numerical experiments at both the 

assembly and core level. Comparisons between the performance of the SUBSPACE, GP, and 

FW-CADIS methods are well presented. Furthermore, the applicability of the SUBSPACE 

method in solving k-eigenvalue problems is shown for core-level problems. Chapter 5 

focuses on the actual applications of the SUBSPACE method in reactor physics: cross 

section functionalization at assembly level and depletion. Conclusions for this work and 

suggestions for future research are given in Chapter 7.  
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CHAPTER 2 

THEORY 

 

2.1 Deterministic Theory  

2.1.1 Forward Deterministic Theory 

In the context of reactor analysis applications, the deterministic transport theory is concerned 

with the solution of the integro-differential form of the forward and adjoint linear Boltzmann 

transport equation that are originally derived by Ludwig Boltzmann to study the kinetics of 

gases[50]; it is hereinafter simply referred to as the transport equation. The two forms of the 

forward transport equation used within this work model the neutron flux in a host medium (1) 

for the case that the flux is maintained by an external distributed source (fixed source form) 

and (2) for the case that fission in the host medium maintains the flux without an external 

source (k-eigenvalue form). In its operator form, the fixed source form of the transport 

equation is given by the following expression [3]: 

   ˆ ˆ, , , , ( )  L r E S r E q r                                              (2) 

In Eq. (2), the dependent variable  ˆ, ,r E  is the angular flux, i.e. the product of the neutron 

density and its speed, and ( )q r is the distributed source.  ˆ, ,r E   depends on the six 

independent phase space variables:  space ( , , )r x y z , direction of movement of the neutrons 

and neutron energy E .  
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The operators L and S are the streaming-plus-collision and the scattering operator given by [3] 

respectively: 

   

   
0 4

ˆ ˆ, , ,           

ˆ ˆ ˆ ˆ' ' , ', ' , , ', '      

t

s

L r E r E

S dE d r E E r E


  

 


   

      
                  (3) 

Instrumental in the definition of these two operators are the macroscopic total and double-

differential scattering cross sections  ,t r E  and  ˆ ˆ, ', ' ,s r E E  
, respectively. It is 

sufficient to say here that the macroscopic cross sections are input parameters characterizing 

the interaction probabilities of the neutrons with the host-medium; we refer to [3] for a 

comprehensive definition of macroscopic cross sections. The second form of the forward 

transport equation used within this work is the k-eigenvalue form: 

1
 ,        L S F

k
                                                   (4) 

where the fission operator F  is defined as: 

     
0 4

( ) ˆ ˆ ˆ' ' , ' , ', ' , ', ' .   
4

f

E
F dE d r E r E r E




  





     
                   

 (5) 

Describing the fission process necessitates introducing additional material properties: The 

fission cross section  ,f r E  , the fission yield  , 

 i.e. the average number of neutrons created per fission event, and the fission spectrum ( )E  

which describes the initial energy distribution of neutrons born in a fission event.  Finally the 
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eigenvalue or multiplication factor k is the ratio of the total neutrons gains in the system and 

the total neutron losses: 

Total neutron gains

Total neutron losses
k 

                                                 
(6) 

Depending on the value of the multiplication factor the system is classified as subcritical 

(k<1), critical (k=1) or supercritical (k>1).  

In order to create a well-posed set of equations, boundary conditions have to be specified on 

the inflow faces: 

   ˆ ˆ ˆˆ, , , , ,  and n 0.            BC Br E r E r r      
               

 (7) 

where 
B  is a given function on the boundary and n̂  is the outward normal vector on the 

domain boundary. Eq. (7) strictly only covers explicit boundary conditions; while in this 

work we frequently utilize reflective boundary conditions, where the inflow flux depends on 

the outflow flux in the “reflected” direction. Reflective boundary conditions can be described 

by the following equation: 

   

 

ˆ ˆ ˆˆ, , , ', ,  and n 0, 

ˆ ˆ ˆ ˆˆ ˆ ˆn n ', ' n 0          

Br E r E r r      

       
                              (8) 
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2.1.2 Adjoint Deterministic Theory 

For the derivation of the adjoint transport equation it is necessary to introduce the notion of 

an inner product over the phase space since the adjoint operators will be defined with respect 

to this inner product. Let the inner product of the two generic functions f  and  g  be given 

by  

0 4

ˆ, ,              
D

f g dE d dV f g




                               (9) 

where D  denotes the spatial domain of the problem. Given a generic operator H  then its 

adjoint is 
†H defined by the following relationship: 

† † †, , ,              H H                                    (10) 

where † denotes the adjoint function. The fixed source adjoint transport equation can then 

be formulated in terms of the adjoint counterparts of the transport-and-collision and 

scattering operators in a manner very similar to the forward transport equation: 

† † † † †( ),      L S q r                                                    (11) 

where the following definitions are used:  

   † † ˆ ˆ, , ,            tL r E r E                                (12) 

   † † †

0 4

ˆ ˆ ˆ ˆ ' ' , , ', ' , ', ' .    sS dE d r E E r E


 


                   (13) 
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The adjoint source is chosen for the specific purpose that the solution of the adjoint problem 

has for the user. In general if the user is interested in some system response (e.g. a reaction 

rate) 

 
, ,       RR  

                                                  
 (14) 

then the adjoint source is chosen to the gradient of the response with respect to the angular 

flux: 

† .           
R

q






                                                (15) 

In contrast to the forward problem, adjoint boundary conditions need to be given on outflow 

boundaries: 

   † †ˆ ˆ ˆˆ, , , , ,  and n 0.BC Br E r E r r                                  (16) 

 

2.1.3 Discretization of the Transport Equation 

Neither the forward nor the adjoint transport equations can be solved analytically for realistic 

reactor physics applications. Therefore, numerical methods need to be devised such that the 

transport equation could be discretized in all phase space variables to facilitate its solution on 

a digital computer. The discretization of the energy variable is performed via the multi-group 

formalism; the discretization of the angular space, for the purpose of this work, uses the NS  

method and the discretization of the spatial variables is typically done using the method of 

step characteristics [49].  
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The multi-group formalism decomposes the range of energy into G bins numbered from 

highest to lowest energy group by 1, ,g G  such that the thg  bin has lower and upper 

energy boundaries 
1gE 
 and 

gE , respectively. Then the transport equation is integrated over 

the range of energy bin g   and rearranging then gives its multi-group form. Obtaining the 

multi-group transport equation is only demonstrated for the forward k-eigenvalue problem 

since the multi-group forms of the forward and adjoint fixed source equations follow readily 

from the following development. Consider the multi-group k-eigenvalue equations in 

operator form: 

1
,for 1, , .g g g g g gL S F g G

k
                                            (17) 

The group streaming-and-collision, scattering and fission operators, group fluxes and multi-

group constants are going to be introduced after the following comments outlining some key 

features of the derivation of the multi-group transport equations: 

1. The angular dependence of the scattering cross section is assumed to be azimuthally 

isotropic such that its functional dependence can be written in terms of the cosine in 

between the incoming and outgoing directions. Then the scattering cross sections is 

expanded into a truncated series of Legendre polynomials: 

       0 0

0

2 1ˆ ˆ, ', ' , , ' , , ' .
4

L

s s sl l

l

l
r E E r E E r E E P 




                  (18) 

The order of this expansion is referred as the scattering order. 
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2. The straight-forward way of defining the group total collision cross sections would 

render it angularly dependent, a feature that is typically not supported by transport 

solvers. Therefore, some care is taken to define an isotropic group collision cross 

section.  

3. Easier derivations assume energy separability which in practical applications is never 

satisfied. While the final form of the equations is much simpler its range of 

applicability is questionable.  

Armed with the comments 1 through 3, the definitions pertinent for Eq. (18) of the operators 

and group angular and scalar fluxes is: 

 

   

   
 

 
 

   

 

   

     

 

1

,

0 lg' lg'

0 0 ' 1

''
' 1
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4

ˆ ˆ,

! 2 1ˆ2
! 4
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ˆ ˆ, , ,

ˆ ˆ ˆ,

g

g

g g g t g g

L M G
m

g g m lm s g

l m g

G
g

g g f gg
g

lm

E

g

E

m

lm g

g

L r r

l m l
S Y r

l m

F r

Y l m

r dE r E

r d Y r

r



  

  



  



 

 





  



   

 
   



 



  

   



 







 0

0g (Scalar group flux)r

                        (19) 

 

The group constants used within the above equation Eq. (19) are given by the following 

expressions: 
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 (20) 
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 
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


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                                     (21) 

It should be noted that the multi-group equations, aside from the scattering approximation, 

are exact. However, in the process of the derivation group constants were introduced that 

depend on the problem’s solution itself such that the equations cannot be solved without 

knowing the solution beforehand. The path usually taken in deterministic transport theory is 

to guess a spectrum, compute the group constants and then solve the multi-group equations. 

It is this step that typically introduces a great deal of approximation into the deterministic 

solution process. In addition, we point out that the MC method does not need to make this 

approximation because it naturally supports continuous/pointwise cross sections sets.  
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The next step in the discretization sequence is to discretize angular variables. Within this 

work exclusively the SN method is utilized for this purpose. For this method the multi-group 

equations are solved only along discrete rays ˆ , 1, ,n n N   and the scalar flux moments are 

then calculated using a quadrature rule that associates a distinct weight nw  for each discrete 

ordinate. Integrations over the angular variable are then approximated as follows: 

14

ˆ
N

n

n

d w
 

 
                                                     

(22) 

After the discretization of the angular variable we obtained a set of NxG coupled PDEs that 

continuously depend in the spatial variable. Postponing the treatment of the coupling for later, 

the spatial variable is discretized by subdividing the spatial domain into non-overlapping 

cuboidal cells and applying standard methods to discretize the equations on each of these 

mesh cells. See [49] for various methods; within this work the Step Characteristic method is 

typically used because it guarantees positive cell average angular fluxes which is important 

when SN  solutions are used in subsequent MC computations.  

As the multi-group SN equations are coupled and a direct solution of the global system of 

equations is impossible due to its size a multi-level solution algorithm is typically applied. 

The legacy method present in most transport solvers is the inner-outer iteration scheme 

where fission and up-scattering sources are updated during the outer iteration, down-

scattering sources are updated during a sweep through all energy groups that is contained 

within a single outer iteration and self-scattering sources are updated in the inner iterations 

which are performed for each group during the sweep through all groups.  
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The DENOVO code that is used as DT solver uses more advanced techniques, namely it 

replaces the inner iteration procedure by a GMRES solver which greatly increases efficiency. 

For a comprehensive description of the solution methods in DENOVO refer to [49]. 

2.2 Monte Carlo Transport Theory 

MC methods are widely applied in computational simulations and especially useful for 

simulating complicated systems with multiple degrees of freedom. MC methods are a class of 

stochastic numerical analysis techniques based on the application of random sampling; that is, 

to evaluate random variables by using random numbers. Random variables are measured 

through random experiments. In contract to deterministic transport methods that solve an 

explicit transport equation to obtain the average behavior of particles quantified e.g. by the 

scalar flux, MC methods infer specific quantities of interest, e.g. the reaction rate in a sub-

volume, by explicitly simulating many particles’ life and averaging over the outcome. 

Naturally, deterministic methods provide a full set of information for the problem such as 

fast and thermal fluxes throughout the system, while MC only gives certain information 

requested by the user, for example, one specific tally in the phase space.  

At its core, the MC technique consists of simulating a single particles life from its birth to its 

destruction. This basic unit of a MC simulation is typically referred to as a history. In general 

many histories have to be performed to obtain statistically meaningful results.  

The life of a neutron from its birth to its destruction is governed by randomness: The spatial 

location where it is born, the initial direction of movement and the energy are all random 
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variables. Further, the distance to the next collision site, the collision type and its outcome 

are random processes as well.  From this perspective, simulating a single particle history can 

be performed using the following basic steps:  

1. Through random sampling pick a specific position where a particle is born as well as 

a specific energy and a specific travel direction; 

2. Determine the distance to collision. That is, the distance the particle travels before its 

first interaction.  

3. Determine the type and consequences of the interaction. If the interaction does not 

lead to an event where the particle is killed; that is, (1) the particle is absorbed or (2) 

the particle exits the phase space of interest, new energy and direction will be picked 

through next random sampling and the particle transport will be continued. In 

particular, if secondary particles are created, for example, if an elastic scattering event 

takes place, the transport of the secondary particles will be simulated through the 

same procedure after the primary particle is terminated.  

4. If the interaction leads to an event that the particle is terminated as stated above: 

particle is absorbed or exits the volume of interest; then all the contribution obtained 

throughout this particle history to the quantities of interest will be recorded and is 

referred to as the score.  
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At the same time, a new source particle will be selected through random sampling and the 

same procedure will repeat until the total number of particle histories is successfully 

simulated.  

 

 

Fig. 2.1: Incident Neutron Events (referred from MCNP Manual) 

Fig. 2.1 illustrates a possible sequence of events for a neutron incident on a slab of 

fissionable material. The first collision of the neutron within the slab takes place at event 1. 

The neutron is scattered after the collision in the direction towards 2 while a photon is 

simultaneously produced and stored for later discussion. At event 2, the incoming neutron is 

terminated by fission while two emerging neutrons and one photon are born.  

The first of the two newly born fission neutrons is captured and terminated in event 3. The 

other fission neutron leaks out of the slab volume at event 4. The photon produced from the 

1. Neutron Scatter, photon 

production 

2. Fission, photon 

production 

3. Neutron Capture 

4. Neutron Leakage 

5. Photon Scatter 

6. Photon Leakage 

7. Photon Capture 
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fission collides at event 5 and leaks out at event 6. Back to the photon produced at event 1: it 

is now captured at event 7.  So far the simulation history is completed for this incident 

neutron and the score has been obtained. The MC simulation proceeds by starting another 

incident neutron and repeats the basic steps that are comprised within a single history.  

The transport simulation procedure described above is usually referred as an analog MC 

simulation. Meanwhile, non-analog MC refers to algorithms where distributions are sampled 

in a manner to increase the probability that a particle contributes to the quantity of interest 

and thus reduce the variance of the desired quantity or to control the particle’s weight to 

ensure that scores do not vary too much in their individual contribution. Hereinafter, certain 

classes of very difficult problems that require days of computer time with analog MC 

simulation could be easily solved in hours or even minutes of computer time applying non-

analog MC methods. 

It is essential for non-analog MC that an unbiased estimate is preserved to ensure the 

correctness of the simulation. To this end the particle weight w , which indicates the total 

number of particles that are transported within a single history (think of a “particle package”), 

is adjusted. In non-analog MC simulations where variance reduction techniques are applied, 

the weight of the particle is adjusted following the conservation formula below: 

0(  ) = (  )   ,w biased pdf w unbiased pdf
                                  

(23) 

where 0w  is the particle weight from analog MC simulation before the variance reduction 

techniques are applied. Equation (23) basically states that non-analog MC is considered to be 
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a correct transport simulation so far as the particle weights are conserved during the (biased) 

transport process. 

2.2.1 Probability Theory and Statistical Uncertainties  

The statistical uncertainty is a very important quantity in MC transport simulations. As the 

number of simulated histories is always finite, the estimates of the mean tally values are 

subject to statistical errors whose magnitude is quantified by the standard deviation. In 

addition the standard deviations can be used to infer if a tally is statistically well-behaved. If 

a tally is not statistically well behaved, the true confidence interval will not be reflected 

corrected by the associated uncertainty and thus the obtained results will be misleading. In 

general, for a well behaved tally, the statistical uncertainty will be proportional to
1

2N


, where 

N is the number of histories. For well-behaved tallies that means that increasing the number 

of histories decreases the standard deviation. However, for a poorly behaved tally, the 

statistical uncertainty may increase as the number of histories increases. By simulating 

particle histories, a range of scores
1, , { }i Nx x x will be generated to each particle history 

depending on the selected tally and applied variance reduction techniques. Define ( )f x as the 

probability density function of history score probability, the expected value of score x is then 

defined as true mean x : 

( )x xf x dx                                                       (24) 

The true underlying distribution function ( )f x  is unknown and so is the true mean.  
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The MC simulation samples the underlying distribution function and obtains a range of 

scores
1, , { }i Nx x x . The range of scores is then used to compute an estimate of the true 

mean: ex , hereinafter referred to as sample mean: 

1

1 N

e i

i

x x
N 

                                                            (25) 

where ix is the score of ith  particle history sampled from ( )f x as stated before, and N  is the 

total number of particle histories. The sample mean ex is the average value of 
1, , { }i Nx x x

for all particle histories in the MC problem. The relationship between the true mean x and the 

sample mean ex is described in [4] by the Strong Law of Large Numbers: if x is finite, ex

tends to the limit of as the history N methods infinity.  

Akin to the true mean, the true variance 2  (i.e: the square of the true standard deviation) 

can be computed from the underlying distribution function by taking the second central 

moment: 

2 2 2 2( ) ( ) ( )   .x x f x dx x x                                            (26) 

The square root  is defined as the standard deviation of the population of scores. In MC 

simulations, this quantity is usually estimated as the sample standard deviation s . The sample 

variance 2s is denoted by:  

2 2

1

1
( )

1

N

i e

i

s x x
N 

 

                                                        (27) 
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The sample variance could also be calculated directly from probability density function ( )f x

as shown in the [5] as  

2 2 2 2

0

( ) ( ) ( )
x

s x x f x x x




                                               (28) 

The larger the data set, i.e. the more histories are run in an MC simulation, the more reliable 

are the sample mean and the sample variance, i.e. the more they are to be close to the true 

mean and variance, respectively. In general MC simulations, the sample mean ex  and the 

sample variance 2s are two representative properties from the probability density function 

( )f x that are of particular interest. 

In the above discussion, it is implicitly assumed that the process of interest involves only a 

single random variable. In reality, processes involve a vector x  of random variables which 

are distributed according to an underlying multi-varied probability distribution function ( )f x .  

In this case, the variance of the i
th

 random variable is defined analogously to the single 

variable case:  

2 2 2 2( ) ( ) ( )   .i i i i ix x f x dx x x                                         (29) 

In addition to the single variable case, the interaction of the random variables is important for 

understanding the underlying process. Therefore, the concept of covariance is introduced to 

measure the interaction of two random variables: 

 cov , ( )( ) ( ) .i j i i j jx x x x x x f x dx                                     (30) 
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The variance is a special case of the covariance since 2cov( , )i i ix x   . For convenience the 

variances and covariances are typically collected in the covariance matrix C :  

   
,

cov , .i ji j
C x x                                                   (31) 

The covariance matrix is a symmetric positive semi-definite matrix of dimension N [REF], 

where N  is the length of the vector x . It features the variances on the diagonal and the (true) 

covariances on the off-diagonals. In section 2.4, it will be shown that the covariances 

characterize the interdependence of the random variables (i.e. their correlation) such that the 

properties of the covariance matrix are at a high premium and matrix decomposition can 

provide valuable information of the system of interest. 

The Central Limit Theorem of probability is a very importance theorem for the estimation of 

the reliability of statistical estimators [4]; it is used to define confidence intervals for the 

precision of obtained results:  

2 /21
lim Pr[ ]

2

t

e
N

x x x e dt
N N





 
 






                              (32) 

Where and  refer to arbitrary values and Pr  stands for the probability. For large N

approximation, it could be demonstrated [4] that  

2 /21
Pr[ ]

2

tex x
e dt

N




 

 


   

                                     

(33) 

From Central Limit Theorem of probability, it is observed that for large N approximation the 

sample mean ex distribution could be considered as a normal distribution. This means that 
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the sample mean ex distribution is normally distributed with the mean of true mean x . Given 

that the sample variance 2s  is considered equivalent to the true variance 2 for a MC 

simulation with sufficient particle histories as discussed before, the following two statements 

on confidence intervals could be deducted from the standard table for the normal distribution: 

      with 68% confidence

2 2   with 95% confidence 

e e

e e

x s x x s

x s x x s

   

   
                         (34) 

 

Within this work, it will be necessary to estimate the statistical uncertainty of derived 

important quantities that are not directly tallied. However, in general a functional form is 

known that describes the derived quantities in terms of directly tallied quantities.  

Then the law of Error Propagation [5] could be used to estimate the statistical uncertainty 

associated with the derived quantities: 

 1 2

2

2 2

1

, , , : known functional formN

N

f i

i i

f x x x

f

x
 



 
  

 


                                  (35) 

where the functional form  1 2, , , Nf x x x  represents the derived quantity. The Error 

Propagation law is applicable to almost all circumstances in measurements.  

It should be noted that the variables 1 2, , , Nx x x  are required to be truly independent to avoid 

the correlation effects.  
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As previously discussed, the estimated statistical uncertainty squared 2 should be 

proportional to 1/ N  . Furthermore, the execution time T of an MC computation is 

asymptotically proportional to the number of simulated histories N , because each history 

basically follows the same algorithm. Therefore, the product of variance 2 and execution 

time T is expected to be asymptotically constant for every estimated quantity in MC 

simulation. The inverse of the product 2T  is defined as Figure of Merit (FOM) of a single 

tally [6]: 

2

1
FOM

T


                                                            
 (36) 

 

The single-tally FOM is a very important and useful statistic parameter to assess the 

statistical behavior of a tally bin in MC simulation. It is a tally reliability indicator to tell how 

well the tally behaves. The single-tally FOM is usually a fairly approximate constant as a 

function of the number of histories for each tally with the possible exception of early 

statistical fluctuations. Meanwhile, the single-tally FOM is also employed to compare MC 

simulation efficiencies and optimize variance reduction parameters. This is achieved by 

comparing the FOMs of several MC simulations with various variance reduction parameters 

and picking the parameters that associate with the highest FOM. However, for large and 

complicated systems, it will take multiple processors-days to perform such analysis even for 

short MC simulations.  
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The global FOM is thus introduced for comparing different methods to obtain effective 

variance reduction parameters [7]. As a direct extension of the single-tally FOM, a global 

FOM is defined for a set of tallies by replacing the single variance by a value representative 

of the distribution of variances. The single value could be the maximum variance or the mean 

variance of the tally set. In general, it is desirable to have a small spread of tally variances 

because the largest variance usually limits the confidence in the simulation’s results.  In [7], 

four different types of global FOMs are introduced: 

21

max

1
FOM

T
                                                              (37) 

2

1
FOM

vT
                                                                (38) 

3

1

( )v

FOM
v T




                                                       (39) 

4 1/4

1

[ ( / 3) ]v v

FOM
v T 




                                            (40) 

In above equations, max stands for the maximum relative uncertainty in one single tally 

throughout the domain; T stands for the time; v  stands for the mean of the variance, v for 

the relative uncertainty of the variance and v stands for Kurtosis, the peak factor.  

The advantage for these global FOMs is that the added parameters are time-independent for 

large N thus preserving the asymptotic behavior for large N. These global FOMs could be 

employed to assess the efficiency of differing weight-window mesh resolutions as well as the 

employment of different variance reduction techniques in conjunction with global weight-
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window maps [7]. In this work, the second form of global FOM is utilized to compare the 

efficiency of hybrid MC-DT methods in GVR.  

2.2.2 Variance Reduction Techniques 

The analog MC method mimics the physical process of particle transport: One could say that 

nature actually plays unbiased MC. However in practice, calculations are expected to 

produce accurate answers with reasonable efficiency. In MC simulations, variance reduction 

techniques, also named biasing techniques, are widely employed to decrease the statistical 

uncertainty   of the desired results while trying to keep the computational time within a 

reasonable range and more importantly keep the estimates of the mean value unbiased. Two 

possible solutions to achieve the goal are: 1. Reduce the standard deviation s  for a fixed 

number of histories; 2. Increase the total particle history N given a fixed amount of time. 

However, in the most recent history of MC, there has always been a trade-off between these 

two solutions for the reason that the decrease of s usually causes a corresponding increase of 

computation time per history; while the increase of total particle history N would lead to a 

higher standard deviation s  [6]. Therefore, variance reduction techniques are applied to 

achieve a compromise to decrease s without increasing the total history N significantly. 

Generally, these techniques could be divided into two categories: 1. Techniques that produce 

particles work by decreasing s ; 2. Techniques that destroy particles work by increasing the 

particle history N [6] [8]. 
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Over the course of last few decades, many variance reduction techniques have been 

developed. It should be noted though that one technique cannot serve for all application 

purposes, and different techniques might also contradict with each other if used together. 

Below is a summary of several of the most widely applied variance reduction techniques:  

Source Biasing 

In many problems, a large amount of source particles are distributed over space, energy, 

angle and time. Among them certain particles tend to make more contributions to a specific 

result compared to other particles and thus are considered of high importance. Source biasing 

works well for such problems. Source biasing samples from a biased source distribution in 

phase space; this means the particles of high importance are much more likely to be selected 

than particles of low importance. The weight of the source particles will be consequently 

corrected to conserve the total weight of particles in the given interval as well as to preserve 

an unbiased estimate [6] [8].  

Implicit Capture  

In analog MC simulation, efforts are wasted on tracking interactions that lead to an 

absorption of the particle. For example, a neutron that has been tracked for multiple 

collisions could suddenly be terminated by absorption and thus no contribution is made to the 

calculation. Implicit capture, also known as survival biasing, is a variance reduction 

technique that avoids the problem of killing particles by absorption. To guarantee a fair game, 

the weight of the particle after the collision is multiplied by the non-absorption probability to  
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the weight before the collision [9]: 

 before 1 a
after collison collison

t

w w
 

   
 

                                             (41) 

where a  is the absorption cross section and t stands for the total cross section.  

The advantage of implicit capture is that efficiency is increased as particles can be terminated 

only by transmission or reflection and thus will always be contributing to the calculations 

without the loss of absorption.  

Exponential Transform  

Exponential transform, or path stretching, is a technique that biases particles into the desired 

area by biasing the distance between collisions. When a particle is moving towards the 

detector, distances that are greater than one mean free path would be sampled. When a 

particle is moving away from the detector, distances that are shorter than one mean free path 

would be sampled. After the sampling, the total macroscopic cross section would be 

modified as [9]: 

mod (1 )ified original

t t p                                                     (42) 

where p  is an exponential transform parameter to vary the degree of biasing, and  is the 

cosine of the angle between sampled direction and the original direction. 

Thus in general, particles moving towards the detector will have their paths stretched and 

particles moving away from the detector will have their paths shrunk. Exponential transform 
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technique is particularly useful for deep-penetration transport problems where a source 

particle has a slight chance to method the detector. 

Splitting with Russian Roulette 

Splitting in MC simulation usually contains three categories: geometry splitting, energy 

splitting and time splitting [6] [9]. 

Geometry splitting is a variance reduction technique extensively employed in Monte Carlo 

codes. The essential idea of geometry splitting is to increase the number of particles moving 

towards a desired direction of interest while particles moving towards an uninterested 

direction are killed to avoid wasting further efforts. Geometry splitting divides the problem 

geometry into a set of cells and each cell is assigned with an importance I . If a particle of a 

weight w migrates from a cell of importance kI  to a cell with a higher importance
jI , the 

particle will be split into a number of /j kn I I  identical particles each of the weight /w n .  

On the other hand, if a particle of a weight w migrates from a cell of importance kI to a cell 

with a lower importance
jI , Russian roulette will be played, and the particle will be killed 

with probability 1 ( / )j kp I I   . If the particle is not killed, it will be followed further with 

probability /j kI I and weight /k jw I I . It should be noted although geometry splitting is 

generally considered a very reliable technique in MC simulations; it does not work in 

problems that have extreme angular dependence because no particles ever enter an important 

cell where the particles could be split in this extreme case [6]. 
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Energy splitting works similarly to geometry splitting. It is performed on the energy space 

and independent of spatial cell. Particles could be split when they pass in between different 

energy ranges and Russian roulette is played correspondingly to reduce the particle number 

and computational time.  

Time splitting is similar to the above two types of splitting, except a particle’s time could 

only increase. Since particles are more important later in time for certain circumstances, it is 

more useful to split particles as time increases. One example is the case where a detector 

responds primarily to late time particles. If too many late time particles exist, the late time 

particles could be roulette to preserve reasonable calculation efficiency [6]. 

Weight Window 

The weight window [6] is a representation of phase space splitting and Russian roulette 

technique implemented in the MCNP code. The phase space could stand for space, space-

energy or space-time. Figure 2.2 below borrowed from MCNP manual provide a detailed 

presentation about how the weight window technique works.  

A weight window is a window of suitable weights defined by the upper weight bound and the 

lower weight bound. In MCNP, these weight bounds are defined by the user. If a particle is 

between the upper and lower weight bounds, no action will be taken; if a particle is below the 

lower weight bound, Russian roulette will be played to decide if the particle be terminated or 

increase to a weight within the window; if a particle is above the upper weight bound, it will 

be split to multiple particles with weights within the window.  
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There are several importance differences between weight window technique and geometry 

split/roulette technique although they work in the similar way [6].  

 

Fig. 2.2:  Weight Window (referred from MCNP manual) 

LW , the lower weight bound. 

SW , the survival weight for particles playing roulette 

UW , the upper weight bound. 

1. Geometry splitting is only space dependent while the weight window is space-energy 

dependent or space-time dependent.  

2. Geometry splitting does not concern the particle weight while the particle weight is 

an important consideration in weight window for deciding the corresponding action.  



www.manaraa.com

33 
 

3. The weight window could be applied at surfaces or collision sites or both. Meanwhile, 

splitting could be only employed at surfaces.  

4. The weight window is able to control fluctuations of particle weight introduced by 

other variance reduction techniques while the geometry splitting is weight 

independent and preserve weight fluctuations.   

5. The weight window could be turned off for selected energy or space regimes.  

The weight window could be generated by the weight window generator. A weight window 

generator generates weight window importance functions automatically [6]. Dividing the 

phase space into a number of different phase space “cells” or regions, the importance of a 

cell is then defined as the expected score generated by a unit weight particle after entering the 

cell. Therefore, the cell’s importance is estimated as: 

 score due to the particles entering the cell
Importance

 weight entering the cell

total

total


                 (43)
 

The weight window technique requires an accurate estimate of the importance function. 

Otherwise, if a phase space is inappropriately sampled, unreliable importance estimate or 

even no importance estimate will be instead generated. It is also important to notice that if 

mesh cells are created too small, the weight window generator will also fail due to 

inadequately sampled subdivisions. In general, weight window is a powerful variance 

reduction technique that is superior to geometry splitting/roulette.  
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2.2.3 Variance Reduction based on the Adjoint Function 

In MC particle transport problems, to calculate the response at a certain location is equivalent 

to computing the following integral: 

( , ) ( , )
d

d
V E

R r E r E dEdV                                                   (44) 

where  is the forward scalar flux, d is the response function in phase space over the 

volume dV . 

Using the fundamental property of the adjoint equation † † †, , ,H H   
  

the response 

R at a certain location could also be introduced as: 

( , ) ( , )
SV E

R r E q r E dEdV  
                                         

(45)
 

where   is the adjoint flux, q  is the source density over the source volume SV .  

The adjoint function represents the particle importance with respect to the corresponding 

response. However, the evaluation of Eq. (45) requires knowledge of the adjoint function that 

is typically not available in a closed form. Instead, an approximation of the adjoint flux is 

employed to generate an importance map and a biased source [8]. Based on the adjoint 

function, Wagner introduces an alternative pdf ˆ( , )q r E  to replace the original pdf ( , )q r E [8]: 

( , ) ( , )
ˆ( , ) ,

ˆ( , )SV E

r E q r E
R q r E dEdV

q r E



                                               (46)
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where ˆ( , )q r E  is given by: 

( , ) ( , )
ˆ( , )

( , ) ( , )
SV E

r E q r E
q r E

r E q r E dEdV










 
                                              (47)

 

This is a typical example of importance sampling. However, since the adjoint function is not 

exact, MC simulations for particle transport are necessary. As stated before, in source biasing, 

the weight of a source particle is corrected as  

0( , ) ( , ) ( , )w r E q r E w q r E                                                         (48) 

 where 0w is the unbiased weight of a particle and usually set equal to 1. By substituting the 

equation (47) into equation (48), the following result could be obtained: 

( , ) ( , )
( , )

( , ) ( , )

SV E
r E q r E dEdV R

w r E
r E r E



 



 
 
 

                             (49) 

which shows an inverse relationship between the adjoint function and the particle weight. In 

this way, the target weight matches the particle’s energy and position precisely. This 

relationship has been verified through computational analysis in [14] as well as been derived 

in [8].  

In [8], it is demonstrated that the number of particles emerging in ( , )r E from an event in

' '( , )r E is adjusted by the ratio of importance: 

' '

( , )

( , )

r E
r

r E








                                                                   (50)
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If r greater than 1, particles are created by splitting; if r lower than 1, particles are destroyed 

through rouletting. Employing the ratio r , the following equation could be obtained as shown 

in [8]: 

' '

' '

( , )
( , ) ( , )

( , )

r E
w r E w r E

r E








                                            (51) 

Since the above relationships for the particle weights were derived from importance sampling 

in a consistent manner, it is referred to as the CADIS (Consistent Adjoint Driven Importance 

Sampling) method [8] and is implemented in SCALE 6.1 code sequence [24]. The CADIS 

method uses a discrete ordinates code to determine the adjoint particle flux. The obtained 

adjoint flux, regarded as the importance of particles, is employed in generating the biased 

source and corresponding weight window map [1]. The adjoint-flux-based importance map is 

required to be consistent with the source biasing to avoid insufficient survival particles that 

will cause a waste of computational time.  

An extension of the CADIS method, forward-weighted CADIS (FW-CADIS) is considered a 

state-of-art variance technique [10]. It is developed by applying an inexpensive discrete 

ordinates code to perform a forward Sn calculation to estimate the expected tally responses. 

The adjoint sources that correspond to each tally are weighted inversely by the forward tally 

estimate. Then the standard CADIS is applied with an importance map and a biased source 

that are generated using the adjoint flux computed from the adjoint Sn calculation.   

For example, in order to calculate a detector response function ( , ) d r E over a mesh tally, 

the adjoint source would be written as [10]: 



www.manaraa.com

37 
 

( , )
( , )  ,

( , ) ( , ) dE

d

d

r E
q r E

r E r E



 

 

                                  

    

  

 
52)

 

where ( , ) r E is an estimate of the forward flux.  

In the current implementation in SCALE 6.1, two options for forward weighting are available 

[24]:  

1. For tallies where the entire group-wise flux is required with low relative uncertainties, the 

adjoint source should be weighted inversely by the forward flux ( , ) r E ;  

2. For tallies where only an energy-integrated quantity ( ) ( , )d E r E dE   is desired, the 

adjoint source should be weighted inversely by the energy-integrated quantity.  

The table below from SCALE 6.1 MAVRIC Manual shows how the adjoint source is 

weighted by certain quantity to optimize the forward Monte Carlo simulation at multiple tally 

locations [24]:  

Table 2.1: Adjoint Source Weighting in FW-CADIS  

 

Calculation 

 

 

Adjoint Source 

Energy and spatial dependent flux ( , ) r E  
1

( , )
( , )

q r E
r E

   

Spatial dependent total flux ( , )r E dE  
1

( , )
( , )

q r E
r E dE

 


 

Spatial dependent total dose rate ( , ) ( , )dr E r E dE   
( , )

( , )
( , ) ( , )

d

d

r E
q r E

r E r E dE



 

 


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The overall goal of FW-CADIS is to achieve the particle density uniform over MC tallies via 

an importance map based on adjoint flux information. By obtaining more uniform particle 

densities, more uniform relative errors for the tallies will be realized. FW-CADIS has been 

proven to be a powerful GVR technique in many applications [10].  

2.2.4 Correlation of Responses in MC Simulation 

A correlation in statistics refers to inter-dependence of two (or in general more) random 

variables, i.e. how does one variable change if another one is changed or in the extreme of 

total correlation: does fixing one random variable totally determine another random variable. 

For example, the median income of a school district can be conjectured to be correlated to 

the average SAT scores within this district, because, in general, the richer the area the better 

the school. Correlations often (not always) imply an underlying causality but do not 

investigate or require it between the two correlated quantities. For example fact Z can cause 

both X and Y such that X and Y are correlated. However, X and Y can be completely 

unrelated in terms of a causal relationship.  

The covariance introduced in section 2.1 is a measure of the linear dependence of a pair of 

random variables. However, its general use is limited because the magnitude of the 

covariance scales with the magnitude of the random variables and therefore general 

comparisons in-between different systems are difficult because of a possible difference in 

scaling. It is more convenient to measure the correlation of two random variables using a 

scaled/dimensionless quantity which gives rise to the correlation coefficient(s).  
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The most commonly used correlation coefficient was introduced by Pearson and is defined as 

[40]: 

,

cov( , )i j

i j

i j

x x
p

 


                                                     (53) 

where cov( , )i jx x  stands for the covariance between variables ix and 
jx ; i and 

j stands for 

the relative uncertainty of each variable. 

An important property of Pearson’s correlation coefficient is that it is only sensitive to linear 

correlations: A linearly uncorrelated, but non-linearly highly correlated phenomenon would 

seem to be uncorrelated when only Pearson’s correlation coefficient is used. Values of the 

correlation coefficient range from -1 representing a perfectly negative linear correlation to +1 

representing a perfectly positive correlation. In any of these limiting cases a random variable 

is totally determined by fixing another random variable by a relationship of the form: 

.i jx mx c                                                                      (54)
 

Totally uncorrelated variables exhibit a correlation coefficient of zero, but the converse, i.e. a 

zero correlation coefficient implies uncorrelated random variables, is not true because 

random variables can be correlated non-linearly. It is, however, true that a zero correlation 

coefficient implies that random variables are linearly uncorrelated.  

In Fig. 2.3, Pearson’s correlation coefficients are listed for four data sets featuring very 

different linear correlations.  It could be seen from the plot that the upper left data set has the 

highest correlation of a correlation coefficient 0.99; while the lower right data set has the 
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lowest correlation of a negative correlation coefficient -0.2. The most correlated data set 

0.99p   has the best linear fit while the least correlated data set 0.2p  
 
has the worst 

linear fit.  

 

Fig. 2.3:  Pearson’s Correlation Coefficients
 

In reactor physics, correlations also exist between responses of different tallies in the regime. 

This means the more correlated two tallies are, the more similar their response will be. For 

example in a core model, the flux in a fuel assembly is expected to be highly correlated to the 

fluxes in the nearby assemblies. Thermal fluxes are expected to correlate more to nearby 

assemblies than fast fluxes because of the shorter mean free path. Earlier work has shown 

that in reactor calculations responses representing distributions such as group fluxes and 

reaction rates are highly correlated [30].  
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A full-size cylindrical cask model from SCALE 6.1 manual [24] is employed to show such 

correlations between responses. Neutron flux responses are detected at 6 different detector 

locations as shown in the Fig. 2.4. Detector 1 and 4, Detector 2 and 5, Detector 3 and 6 are 

located very close to each other respectively. The adjoint flux profile for each detector is 

plotted separately in the Fig. 2.5. It is quite obvious that the detector 1 has the most similar 

adjoint flux profile to detector 4. The same similarity also exists in between detector 2 and 5, 

detector 3 and 6.  

In MC simulation particularly for challenging reactor physics problems, identifying these 

correlations in an automated manner could be used to identify the minimum number of 

weight-window maps that are independent of each other. Motivated by this fact, a new hybrid 

GVR technique named the SUBSPACE method, is developed by taking advantage of the 

correlations between responses and their associated weight-window maps to improve the 

efficiency of MC calculation. The detailed implementation of the SUBSPACE method is 

introduced in Chapter 4.  
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                             SCALE: 100cm 

Fig. 2.4:   Cask Geometry and Detector Locations from SCALE 6.1 Manual 

 

 

Fig. 2.5:   Adjoint Flux Profiles of Detector 1~6  

Detector locations: (coordinates in cm) 

1: 180, 0, 0; midplane, 10cm from surface 

2: 0, 0, 295.6; on axis, 10cm from surface  

3: 180, 0, 267.9; center of gap, 10cm rmax 

4: 270, 0, 0; midplane, 100 cm from surface 

5:0, 0, 385.6; on axis, 100cm from surface 

6:270, 0, 385.6; 100cm from each surface 
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  2.3 Monte-Carlo-Deterministic Hybrid Method  

Over the course of the last five decades, there has been a growing interest in coupling Monte 

Carlo and deterministic methods employing a hybrid method to combine their benefits and 

overcome some of their individual deficiencies [1],[2],[16],[19],[21],[33]. The main idea is to 

bias Monte Carlo sampling using an estimate of the solution obtained inexpensively from a 

simplified deterministic model. In the Monte Carlo community, this procedure represents a 

form of “Variance Reduction”. Among the variance reduction techniques, splitting/roulette 

and implicit capture have been the most widely applied techniques for reducing the variance 

of the Monte Carlo calculations [17]. These techniques, together with many others, are 

available in most standard Monte Carlo codes including MCNP [6], TRIPOLI [22], MORSE 

[26], and MCBEND [42].  

These techniques have been successfully demonstrated to reduce the variance for a single 

response [1], [13], [16] often representing a functional of the solution over a region in the 

phase space, i.e., a detector’s response in a given region. Examples are the TRIPOLI MC 

code [22] and more recently the Lift (local importance function transform) Method 

developed by University of Michigan [43]. The TRIPOLI MC code employs an importance 

function to obtain a number of advanced biasing schemes, for example, exponential biasing, 

quota sampling and collision biasing. The importance function is generated on a user-defined 

mesh via several means, including a method based on graph theory and a 2-D discrete 

ordinates adjoint solver [44].   
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Lift Method employs an approximation of the exact adjoint solution to approximate the zero-

variance method for the source-detector problem, and therefore overcomes the difficulty of 

searching the exact solution of the adjoint transport problem. This approximation uses a 

deterministic adjoint calculation to obtain localized biasing parameters for source biasing, 

collision biasing and path length biasing [43].  

When these methods prove to be powerful, nevertheless, they are very sensitive to the 

accuracy of the importance function, require additional user input and are statistically 

instable compared to the splitting/roulette methods alone [31]. Furthermore, once the 

problem is expanded from a detector to a large region, Global Variance Reduction (GVR) 

becomes the primary goal, especially when Monte Carlo methods are to be used for reactor 

analysis applications. In this case, the above methods are no longer effective for the purpose.  

As stated before, GVR denotes problems where one seeks to reduce the variances for all 

responses evaluated everywhere in the phase space, such as group fluxes, reaction rates 

density, and homogenized few-group cross-sections. Therefore a uniform distribution of MC 

particles throughout the domain is crucial. Responding to this challenge, a number of 

methods have been developed in the field. In general, these methods could be divided into 

two categories: i) Methods that employ a deterministic forward flux solution as the basis of a  

global MC calculation; ii) Methods that employ the concept of adjoint function (usually 

deterministic) to bias MC calculation and obtain a uniform global variance reduction.   
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One of the most widely applied variance reduction methods that utilize deterministic forward 

flux solution is the weight window generator developed by Booth and Hendricks [2]. Weight 

window generator, originally known as forward-adjoint generator, is an importance 

estimation technique. The weight window technique is implemented in the standard version 

of MCNP. It applies splitting and roulette to obtain variance reduction. A forward MC 

calculation is performed, and the particle importance is calculated as the ratio of the total 

score entering a cell to the total weight entering a cell.  

Solomon and Booth later developed the Talley Linear Combination technique by 

implementing a linear tally combination in MCNP [21]. In conjunction with MCNP’s weight 

window generator, this technique optimizes a linear combination of tallies and is shown to be 

equivalent to increasing the adjoint source strengths of detectors by means of the linear 

multiplier. Solomon and Booth have successfully extended this technique to generate global 

importance in conjunction with MCNP’s mesh tally capabilities.  

Larsen’s group has also developed several methods, based on forward flux estimate, to obtain 

lower uncertainties everywhere in the problem. Cooper and Larsen’s weight window method 

[18] employs a forward deterministic solution to set a space-angle-energy- dependent weight 

window to obtain a uniform distribution of Monte Carlo particles throughout the system. 

While the method is shown significantly more efficient than implicit capture, however, since 

the forward flux does not represent the expected uniform response throughout the phase 

space, the method is not effective when applied to a large realistic problem.  
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Becker and Larsen proposed a hybrid technique that calculates an inexpensive deterministic 

global estimate of the forward flux then uses MC to estimate the multiplicative correctons 

[13]. Since the correcton flux has much less spatial variation compared to the actual physical 

flux, a more uniform distribution of correctons is obtained instead of the distribution of the 

original angular flux.  Similar to Cooper’s method, the correcton method employs an 

inexpensive deterministic global estimate of the forward flux.  Different from Cooper’s 

method [18], the correcton method distributes correctons instead of angular flux particles in 

MC simulations and therefore shows more efficiency in obtaining a uniform global variable 

reduction. However, the correcton method is more complicated to implement than Cooper’s 

method, and has not been widely incorporated in computational codes up to date.  

While the above methods, for example the weight window generator, prove useful in the 

iterative process of obtaining variance reduction parameters [20, 31], they share the same 

fundamental problem that an insufficient number of particles pass through the space-energy 

interval and cause the lack of accuracy in estimating the importance, which means, either no 

importance estimate or an unreliable importance estimate for this interval. 

Wagner states:”Current forward MC importance generators are restricted by their statistical 

nature and are of limited use in multi-dimensional deep-penetration problems.”[8] 

Responding to the difficulties related to statistical importance estimation, people turned to 

the possible methods that utilize the concept of the adjoint function based on the fact that a 

deterministic means to generate accurate importance would significantly accelerate the MC 

calculation for large and complicated problems. The adjoint function, as the solution to the 
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adjoint Boltzmann transport equation [50], has been long recognized for its physical 

significance as a measure of the particle importance to desired responses. Kalos[11] and 

Coveyou [15] proposed using the adjoint function as an importance function to 

advantageously bias the MC calculation in their early work. Realizing this important physical 

interpretation of the adjoint function, several works in the field have employed this fact for 

biasing MC calculations.  

One of the earliest literatures in this area by Tang [46], [47] employs two-dimensional (2-D) 

discrete ordinates adjoint functions to bias multigroup MC calculations. This method later is 

implemented in the SAS4 sequence [48] of the SCALE code package (SCALE, 2001) for 

spent fuel cask dose calculations using 1-D Sn adjoint functions.  

AVATAR method [20] developed by Los Alamos National Laboratory employs the adjoint 

function to construct space- energy- and angular-dependent weight windows for MCNP. The 

adjoint function is calculated by a 3-D Sn code THREEDANT [45].  

Since AVATAR is automated, it requires little user intervention to generate the weight 

window and thus human efficiency is significantly increased. However, the difficulty 

associated with the automated process still remains, that is the user must provide the weight 

window values and corresponding spatial and energy grid.   

Barrett and Larsen developed the Variational Variance Reduction method [16]. This 

variational method uses a variational functional that employs first-order estimates of forward 

and adjoint fluxes that are of low accuracy to yield a more accurate second-order estimate of 
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a desired system characteristic, for example, the criticality eigenvalue. Variational Variance 

Reduction method is different from traditional variance reduction methods given that the 

particle weight in the MC transport process is never modified. However, it has been utilized 

together with other variance reduction methods that indeed modify the particle weight [1]. 

The Variational Variance Reduction method is currently under development to solve energy-

dependent multi-dimensional problems.  

Motivated by the expensive computational expense of performing MC calculations 

particularly in reactor physics, Wagner and Haghighat proposed the CADIS (Consistent 

Adjoint Driven Importance Sampling) method [1]. The CADIS method calculates consistent 

source biasing and weight window parameters based on the space- and energy- dependent 

deterministic adjoint function. The equations for obtaining the biasing parameters are 

consistently derived with the adjoint function as the weighting function [8].  

Since the CADIS method eliminates the manual effort of selecting variance reduction 

parameters; it significantly saves user’s preparation time for large MC calculations.   

The CADIS method has been implemented into codes ADVANTG (based on MCNP) and the 

MAVRIC sequence of SCALE 6.1. It has been demonstrated very effective in optimizing the 

calculation of a response for a single point or a small region and thus extremely powerful for 

variance reduction of deep-penetration problem with a distributed source. However, CADIS 

method has not been successful in optimizing global distributions due to the inefficiency in 

specifying the adjoint sources throughout the phase space and therefore fails to obtain a 

uniform global variance reduction [10].  
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To overcome this difficulty, Wagner and Peplow developed the FW-CADIS (forward-

weighted Consistent Adjoint Driven Importance Sampling) method as a direct extension of 

the CADIS method. FW-CADIS method employs two approximate calculations: one forward 

and one adjoint, to generate consistent source biasing and weight window parameters for MC 

simulations. The forward calculation is used to define appropriate adjoint sources that are 

later used in a deterministic adjoint calculation to generate the adjoint function. The 

generated adjoint function is employed to assign importance values to various regions in the 

phase space and thus uniform responses are achieved throughout the system. FW-CADIS 

method has been incorporated in the MAVRIC sequence of SCALE 6.1. It has been proven 

that FW-CADIS method is very promising in optimizing global distributions.  

While the idea behind the FW-CADIS method is based on sound reasoning, it does not 

represent the only way to assign weights, which is expected to depend largely on the 

application of the model. Moreover, it does not assure a less computational burden compared 

to other methods. In this dissertation, we propose a new method to address the simultaneous 

reduction of response variances everywhere in the phase space. The new method, denoted by 

the SUBSPACE method, optimizes the selection of the weight windows for reactor analysis 

problems where detailed properties of all fuel assemblies are required everywhere in the 

reactor core. Like the FW-CADIS, the SUBSPACE method utilizes importance maps 

obtained from deterministic adjoint models to derive automatic weight-window biasing. In 

contrast to FW-CADIS, the SUBSPACE method identifies the correlations between weight 

window maps to minimize the computational time required for global variance reduction, i.e., 
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when the solution is required everywhere in the phase space. The correlations are employed 

to reduce the number of maps required to achieve the same level of variance reduction that 

would be obtained with single-response maps. Preliminary numerical experiments are 

discussed in the following Chapters to serve compare the SUBSPACE and FW-CADIS 

methods in terms of the reduction in standard deviation of spatially distributed responses. 
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CHAPTER 3     

PROPOSED HYBRID METHODS 

3.1 SUBSPACE Method 

3.1.1 Motivation 

As stated in the previous chapters, hybrid methods such as FW-CADIS employ an 

approximate adjoint function to assign importance values to various regions in the phase 

space. The importance of a particle describes the contribution of this particle to the response 

of interest. In principle, if the adjoint map is known exactly and employed by a zero variance 

biasing scheme, the response could be obtained with zero variance. Solving the adjoint 

problem exactly however is as difficult as solving the forward problem. Hence, it is 

computationally sufficient to employ an approximation of the adjoint solution to bias the 

forward Monte Carlo solution via the use of weight-windows. Given a weight-window that is 

not zeroed anywhere in the phase space, one is guaranteed to reach the exact solution in the 

limit.  

When more than one response is needed (assume a total of I responses), the adjoint-based 

weight-window maps are expected to be different for different responses. This problem may 

be addressed in one of three ways:  First, one could execute the Monte Carlo simulation I 

times in a brute force manner, each corresponding to a different single-response weight-

window map. Clearly, the brute force method will be computationally intractable as I is 

expected to be large for realistic problems;  
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I represents the total number of responses evaluated everywhere in the phase space.  

Second, one could form one weight-window map that captures the important features of each 

map. This could be done by creating a linear combination of the importance maps associated 

with the original single-response weight-window maps, with the weights reflecting the 

importance of each map. This is the method adopted by FW-CADIS, where the weights are 

selected to be proportional to the inverse of the forward flux. In this method, referred to 

hereinafter as FW-CADIS, a response evaluated at a region in the phase space will have 

higher weight for its weight-window map if its corresponding flux is small. The logic behind 

this method is that regions receiving fewer particles will have higher variances for their 

associated responses. Therefore by sending more particles to these regions, the variances of 

their associated responses are expected to decrease.  

Now, while the FW-CADIS method proves useful, it does not guarantee the associated 

computational burden will be less than that reached by the brute force method. The following 

numerical experiment demonstrates this situation for a model involving two responses with 

relatively independent weight-window maps: Consider a point detector model problem with 

two responses only as depicted in Fig. 3.1. Each response represents a point detector on the 

side of a concrete shield with distributed source in the center. All dimensions are in 

centimeter, both detectors are located 10 cm from the shielding surface. Shield 1 is twice as 

thick as shield 2 in order to render its response noticeably smaller than detector 2’s response.  

Given the weight-window maps for the two responses, the total computational time with the 

brute force method is equal to the sum of the times required to separately reduce the variance 
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for each detector to the desired level, e.g., 4%  . Employing the FW-CADIS method, the 

total time required (represented by number of histories) is found to be considerably higher 

than the brute force method.  

 

Fig. 3.1:   Test Case for FW-CADIS and Brute Force Methods 

Fig. 3.2 compares the number of histories required to reach the same level of variance for the 

two detectors. The first two cases are produced using the brute force method, and the last two 

are generated using the FW-CADIS method. 

In this work, we propose a third method to addressing the simultaneous reduction of 

variances for I responses, i.e. global variance reduction. It is denoted by the SUBSPACE 

method and it may be considered as a trade-off between the brute force and the FW-CADIS 

methods, where instead of evaluating all I weight-window maps (brute force) or a single 

weight-window map (FW-CADIS), only a small number r of pseudo response maps are 

evaluated, such that 1 r I .  
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The pseudo responses are random linear combinations of the original I single-responses. 

Implementing this method into the FW-CADIS framework should be straightforward, as it 

will only require the execution of FW-CADIS r times with the results combined statistically 

to determine the responses mean values and standard deviations. Moreover, the weights for 

the pseudo responses are generated randomly using the SUBSPACE method thus eliminating 

the need for an extra forward model execution to determine the flux-based weights as 

currently done by the FW-CADIS method. Finally, given the independence of the r 

executions, the SUBSPACE method allows for coarse-grained parallelization, thereby taking 

advantage of parallel computing environments.  

 

Fig. 3.2:  Comparison between Brute Force and FW-CADIS Method 
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3.1.2 Proposed SUBSPACE Method  

The formation of the pseudo responses and their associated weight-window maps is 

mathematically equivalent to projecting the single-response weight-window maps onto a 

subspace of smaller dimension which captures their variability.  This is possible because the  

I single-response weight-window maps will likely be correlated. This typically happens when 

responses represent distributions that are evaluated everywhere in the phase space. For 

example in a core model, the flux in a fuel assembly is expected to be highly correlated to the 

fluxes in the nearby assemblies. Thermal fluxes are expected to correlate more to nearby 

assemblies than fast fluxes because of the shorter mean free path. Identifying these 

correlations in an automated manner could be used to identify the minimum number of 

weight-window maps that are independent, denoted by r. We show that each of the r 

independent correlations represents a weight-window map that is associated with a pseudo 

response. By reducing the variances for the pseudo responses, one can effectively reduce the 

variances for the original I responses. If r I , computational savings could be achieved. 

Earlier work has shown that in reactor calculations responses representing distributions such 

as group fluxes and reaction rates are highly correlated [27, 31]. 

The degree of correlations between the responses can be described by the singular values 

decline of the matrix containing the single-response importance maps. This may be described 

mathematically as follows: let iu be the response (i.e., tally) calculated at the i
th

 mesh cell. 

Mathematically, it may be described by the inner product of the forward flux solution   and 

a response function i  of the form: 
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, ,  and 1,...,i iu i I                                                 (55) 

 

where I is the total number of mesh cell which is the same as total number of tallies (i.e., 

responses).The importance map for 
iu  is obtained as solution of an adjoint problem of the 

form: 

* * i
i i

u
L 




 


                                                     (56) 

where *L  is the adjoint transport operator and *

i  is the importance map associated with 

response iu . In MAVRIC, the deterministic code DENOVO [49] is used to obtain an 

approximate solution *

i  of the adjoint problem in Eq. (56) on a coarse grid in phase space 

whose grid points may be indexed by 1,..,j J . The *

i  may be written as: 

                                               
* * *

,1 ,...
T

i i i J                                                             (57) 

where 
*

,i j  describes the importance values of the particles entering the phase space at point j 

which eventually contributes to the response iu . The importance maps corresponding to all 

responses may be assembled in a matrix Ψ  of the form. We denote this matrix by Single-

Responses-Importance (SRI) matrix: 

* * *

1,1 1, 1

* * *

,1 ,

T

J

T

I I J I

  

  

   
   

    
   
   

Ψ                                         (58) 
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In the numerical experiments section, we show that a typical SRI matrix of interest to reactor 

analysis problems exhibits a significant decline in its singular value spectrum. This implies 

that a great deal of correlation exists between the importance maps of its different responses. 

Research in linear algebra has shown that one could take advantage of this behavior by 

approximating the matrix with other matrices of much smaller dimensions. The dimension of 

the smaller matrices is determined by the effective rank of the matrix Ψ  [28]. Linear algebra 

is replete with matrix decomposition methods that could be used to determine the rank of a 

matrix whose elements are explicitly available, which is not the case in our problem. Explicit 

evaluation of the matrix implies evaluation of the adjoint model for all possible responses 

which is overwhelming for routine design calculations. In the past ten years, research in the 

applied linear algebra community has shown that great insight into the singular value 

spectrum could be obtained via simple matrix-vector products operations employing random 

vectors [29].  

This means that only operations of the form 
T

jΨ  (where 
I

j   is a randomly generated 

vector) are required to determine the decline in the singular values which could be used to 

determine an effective rank for the matrix. We show next how these randomized matrix-

vector products could be easily generated as pseudo responses, representing random linear 

combination of the original I responses. Let 
ju  be the j

th
 pseudo response defined by: 

,

1

I

j i j i

i

u u


       for 1,...,j r                                        (59) 

Using the definition for iu  and *

i  from Eq. (55) and Eq. (56), one can write: 
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, ,

1 1

, ,
I I

j i j i i j i

i i

u      
 

    

* *

,

1

I
j

j i j i

i

u
L  

 


 


  

Using the linearity of the transport operator, one can write an expression for the importance 

map for the pseudo response iu  as: 

 * *

,

1

I

j i j i

i

  


       for 1,...,j r                                           (60) 

Note that 
*

j  is a linear combination of all I importance maps, which can be re-written using 

linear algebra notations as:  

* T

j j Ψ ,                                                                  (61) 

where 
1, ,...T

j j I j      .  

If the  
1

r

j
j




 randomly generated, one can show that the vectors  *
1

r

j
j




 are independent 

and span a subspace of size r which belongs to the range of the matrix T
Ψ  [27, 29].  

Let  represent the subspace generated by the vectors  *
1

r

j
j




, and   as the orthogonal 

subspace. Now, split each of the importance vectors into two components, one that lives in 

the subspace ,  *
1

I

i
i




, and the other in the subspace  ,  *
1

I

i
i





. Using elements from 

random matrix theory [29], one can show that as r is increased, the components in the 
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subspace   continue to shrink, and the components in the subspace  continue to increase. 

More importantly, for most realistic problems, the components living in the   subspace are 

significantly reduced with a small estimate for the rank r; this is because the major decline of 

the singular values is expected to happen over the first few dimensions associated with the 

highest singular values. Therefore, most of the acceleration rendered by the proposed 

SUBSPACE method is expected to happen with a small estimate for the rank r.  

The general algorithm to implement this method may be described as follows: 

Requirements:  

- A general methodology that employs an importance map *

i  to bias Monte Carlo 

particles towards a given response iu . 

- The capability to calculate an importance map 
*

j  for a pseudo response defined as a 

random linear combination of the original I responses as defined in Eq. (60).  

Objective:  

- Identify r pseudo response, and employ them to reduce variance for all I responses. 

Algorithm: 

a) Estimate the rank r. If no prior knowledge about the rank is available, pick a small value, 

e.g. 5 20r  , and execute step b. Calculate the SVD of the matrix containing the 

importance maps for the r pseudo responses: 
1 2 ... r   

  . If the singular values 

do not significantly decline, increase the estimate for r.  
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b) PARALLEL DO 1,...,j r   

1. Generate a random vector 
I

j   

2. Form a pseudo response 
,

1

I

j i j i

i

u u


  

3. Calculate the importance map *

i  associated with 
ju   

4. Bias Monte Carlo particles based on the *

i  

5. Tally the original I responses until number of histories is exhausted 

6. Record the responses ,i ju
 and their standard deviations ,i ju

 

 END DO 

c) COMBINE the responses and their standard deviations from the r runs as follows [30]: 

 
,

2
1

,

r
i j

i i

j
i j

u
u u

u



 




      and    

 
2

1
,

1 1r

ji i j
u u
 



                                            (62) 

End Result:  

- The 
iu and 

iu  are the mean and standard deviation for the i
th

 response calculated by 

the SUBSPACE method. 

This algorithm is composed of three steps. Step (a) requires an estimate of the rank r. In the 

following sections, we will show that the variance reduction is not very sensitive to the 

choice of the rank estimate. For interested readers, we include in the appendix an elaborate 

algorithm that describes how the rank for the matrix Ψ  could be determined exactly using rex 

adjoint model executions, where rex is the exact rank. Step (b) represents an execution of an 
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existing variance reduction method with a special choice for the pseudo response. Since the 

importance function is often calculated using an adjoint model, this should be fairly easy to 

implement for most codes via simple manipulation of the right hand side of the adjoint 

equation. Next section provides more details on this step for incorporating the SUBSPACE 

method into the FW-CADIS framework. Step (c) combines the results from the r executions, 

each with N independent histories, assume that they are statistically independent [30].  

The expression for the mean value implies that simulations with high variance will have little 

impact on the unbiased estimate for the mean value. The formula for the variance implies that 

the overall variance is reduced as more simulations are executed which is consistent with the 

law of Monte Carlo sampling. 

   3.1.3 FW-CADIS-Based Implementation  

In this section, we discuss the implementation of the SUBSPACE method into the FW-

CADIS framework. FW-CADIS proceeds in two steps: First, a forward deterministic model 

is executed to calculate an estimate for the flux everywhere in the phase space. Second, an 

adjoint model is executed. The inverse of the flux estimated by the forward model is 

employed to design the right hand side of the adjoint model, referred to as the adjoint source 

which can be expressed as the derivative of the response with respect to the flux (see Eq. (56)) 

[10]. This results in giving more weight to regions in the phase space where the flux is low, 

and less weight to regions with high flux. In addition to flux-based weights, FW-CADIS 

allows for user-defined weights for each region in the phase space.  
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To implement the SUBSPACE method, the user-defined weights are selected randomly and 

are assigned via the input file. This is equivalent to setting a pseudo response as a random 

linear combination of all responses as required by Eq. (59). The resulting adjoint solution 

satisfies Eq. (60) which is equivalent to multiplying the SRI matrix with a random vector.  

Next, as discussed earlier, the SUBSPACE method does not require the flux-based weights, 

thus eliminating the needs for the extra forward model execution. Fortunately, this is also 

possible, as FW-CADIS framework is flexible enough to provide the user the option to 

bypass forward flux weighting. Therefore to implement the SUBSPACE method, one needs 

to specify an estimate for the rank r. Next, the FW-CADIS sequence is executed in parallel r 

times with the forward flux weighting bypassed and random weights assigned to the adjoint 

source; both of these could be specified via the input cards to FW-CADIS. After the r FW-

CADIS executions are completed, a script is needed to read the responses and their standard 

deviations and statistically combine them as given by Eq. (62). This implementation strategy 

has been adopted in our work and is employed in the following work to analyze both a core 

model and an assembly model.  

 

 

 

 

 



www.manaraa.com

63 
 

3.2 GAUSSIAN PROCESS METHOD 

3.2.1 Motivation  

The use of variance reduction methods has proved beneficial in accelerating the convergence 

of Monte Carlo simulation. While several methods have been proposed to achieve this goal 

in recent years, hybrid methods that employ deterministic models to bias Monte Carlo 

particles have received the most attention from the nuclear community’s researchers. This 

section presents a new hybrid method based on the assumption that radiation transport may  

be treated as a Gaussian Process [57]. Results obtained using one relatively small 

dimensional problem (assembly model) indicate that the performance of the Gaussian 

Process method is comparable to that of the SUBSPACE method. Moreover, it is believed 

that researching different global variance methods will help provide insight into their 

mechanics and the hybridization potential needed to combine their benefits. 

We focus in this dissertation work on methods that employ the adjoint model with a source 

term representing the derivative of the given response with respect to the state variable (i.e., 

flux)
1
. While this methods results in accelerating the convergence for the given response, it 

may grossly estimate the variance of other responses. A brute force method of repeating the 

above procedure for different responses could be attempted but quickly proves to be 

computationally intractable, especially when responses are desired everywhere in the phase 

                                                           
1 Note that in FW-CADIS terminology, the derivative of response with respect to flux is called the response function; both terms represent 

the right hand side of the adjoint equation (i.e. the source term). 
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space
2
. To combat that, other set of techniques, referred to as Global Variance Reduction 

(GVR) techniques, have been proposed. GVR techniques attempt to distribute particles 

equally over the phase space to achieve uniform variance reduction [62].  

3.2.2 Mathematical Description of GP Method  

A Gaussian Process (GP) is one whose random fluctuation described by a normal distribution. 

In our context, this means that the statistical fluctuations of all responses resulting from the 

Monte Carlo sampling process could be described by normal distributions. Let 

 1 2 ...
T n

nr r r r   represent a vector of the n responses of interest representing n 

random Gaussian processes. Consider N  realizations of these random processes denoted by: 

 
1
, 1,2,....,

n
k

i i
r k N


 . The covariance between the two responses 

ir  and 
jr  is given by: 

                                                
1

1
cov( , ) lim

1

N
k k

i j i i j j
N

k

r r r r r r
N



  

                       (63) 

where 
ir  is the estimated mean of the response 

ir , i.e., 

1

1 N
k

i i

k

r r
N 

   

                                                           
2
 The term ‘brute force’ is not to be confused with its more common usage that implies unbiased execution of Monte Carlo. In our context, 

‘brute force’ implies the direct application of the single response variance reduction method for each individual response. 
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The covariance information between all pairs of n responses may be compactly represented 

by a symmetric covariance matrix 
n nC  such that: cov( , )ij i jr rC . This matrix may be 

rewritten using singular value decomposition as follows [28]: 

                                                         
1

r
T T

i i i

i

w w


 C WΣW ,                                   (64) 

where  1 2 .... n r

rw w w  W is a matrix of r orthonormal singular vectors, 

 1 2diag , ,...., r  Σ  a diagonal matrix of r nonzero singular values, and r the rank of the 

covariance matrix [62]. The power of this decomposition lies in the following property: if 

one defines pseudo responses of the form:
T

i iw r  , one can show that the r pseudo 

responses, unlike the original responses, are uncorrelated, i.e. 

                                                                
cov( , )i j ij   ,                                             (65) 

where ij  is the Kronecker delta function, such that: 

                                           
0ij   for i j  and 1ij   for i j .                                  (66) 

Note that the pseudo responses are merely linear combinations of the original responses with 

the weights determined by the singular vectors of the covariance matrix [36]. If the 

covariance matrix is numerically ill-conditioned, as observed in earlier work, the effective 

number of pseudo responses may become much smaller than the number of original 

responses. One can take advantage of this situation by designing weight windows to bias MC 

particles towards the pseudo responses rather than the original responses.  
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To provide a basis for comparison, we contrast the new method to both the FW-CADIS and 

SUBSPACE method [62]. In all three methods, the weight windows-based biasing is 

determined by solving an adjoint equation of the form (demonstrated for a single response): 

                                                               
 * * i

i

r








L

                                                      
(67) 

where *
L  is the adjoint transport operator with appropriate boundary conditions,   is the 

forward flux, and *

i  is the adjoint flux corresponding to the i
th

 response 
ir . If *

i  is employed 

to determine weight-windows, one can reduce the variance for only the response 
ir  and runs 

the risk of grossly estimating the variances for all other responses. To achieve GVR, the FW-

CADIS method formulates a single pseudo response of the form:  

                                                        

FW-CADIS

1

1n

i

i i

r



                                                 

(68) 

In this method, more MC particles are sent to regions in the phase space where the flux is 

low. The rationale behind this is that regions with lower flux receive fewer MC particles and 

their associated responses are therefore expected to have higher variances. To promote 

uniform variances across the phase space, more particles are encouraged to go to lower flux 

regions. 

The SUBSPACE method argues that the single-response adjoint fluxes are highly correlated, 

which may be exploited to reduce the number of adjoint calculations required to achieve 

global variance reduction. This is done by formulating k pseudo responses of the form: 
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Subspace

,

1

n

j i j i

i

r 


 , 1,2,...,j k
                                    (69) 

where k is the effective rank of the matrix comprised of all n single-response adjoint fluxes, 

and ,i j  are randomly generated weights.  

Finally, the GP method formulates r pseudo responses of the form:  

                                                            
GP T

j jw r  , 1,2,...,j r
                                      (70) 

where r is the rank of the unknown covariance matrix.  

The central requirement for the GP method is the estimation of the covariance matrix C . 

Since the focus of current work is to demonstrate proof of principle, the matrix C  is 

estimated after MC calculations are completed. In reality, it can be generated in a couple of 

different manners. One way is to employ first a FW-CADIS or a SUBSPACE method with 

few initial histories to provide an initial estimate for C  which could be updated dynamically 

as more histories are tracked. It could also be estimated deterministically noting that the 

primary random process in radiation transport is the interaction between a particle and a 

target nucleus. Since the process of interaction is characterized by cross-sections, one can 

sample cross-sections using a deterministic model to estimate the covariance matrix [62].  

Assume that l model executions are employed to build an estimator for the covariance matrix

C . In the j
th

 execution, one records the n responses denoted by a vector jr  and 1,2,...,j l . 

After l  executions, the estimator for covariance matrix may be constructed as follows: 
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  

1

1

1

l
j j

i

r r r r
l 

  

C

                                   
(71) 

where r  is a vector of estimated means of all responses. An SVD of the matrix C  is then 

recovered as in Eq. (64). 

Note that in the FW-CADIS method, only one adjoint and one forward flux solution are 

required. The SUBSPACE method and the GP methods require no forward flux estimates, 

but they require respectively, r and k adjoints, where r is the effective rank of the matrix 

comprising all single-responses adjoint, and k the effective rank of the covariance matrix 

described above. These additional adjoint runs have to be considered when comparing figure 

of merits [62].  
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CHAPTER 4 

NUMERICAL EXPERIMENT 

 

4.1 Fixed Source Simulation 

      4.1.1 SUBSPACE Method Performance  

This section is divided up into three subsections. The first subsection employs a BWR 

assembly model and the second a PWR core model; both compare the performance of the 

FW-CADIS and SUBSPACE methods with an estimated rank of r = 10 as discussed in the 

third subsection.  

4.1.1.1   Assembly Model 

The first experiment is based on a two-dimensional MARVIC model for a 7x7 BWR 

assembly; a cross-section of the assembly is shown in Fig.4.1. The assembly model 

represents the southeast assembly of a typical 2x2 BWR control cell which contains four 

assemblies and a cruciform control blade. Within the scope of this preliminary work the 

control blades are not modeled. The BWR assembly contains 49 fuel rods of different 

compositions in a regular 7x7 fuel rod array. A single mesh tally is defined over the 49 

square regions each comprising a fuel rod and its neighboring moderator within what is 

commonly referred to as a fuel pin cell. The thermal flux tallied over each fuel pin cell is 

employed as a response giving rise to a total of 49 responses, i.e. 49I  . 



www.manaraa.com

70 
 

 

Fig. 4.1: BWR Assembly Model 

 

Table 4.1:     BWR Model Specifications 

Assembly Pitch (cm) 15.24 

Fuel Pitch (cm) 1.8745 

Fuel Rod Diameter (cm) 1.2116 

Cladding Thickness(cm) 0.1092 

Canning Thickness (cm) 0.2032 

Material Temperature (K) 552.833 
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Employing the MAVRIC procedure, the mesh tallies, the corresponding responses, and their 

weight-windows are defined over each fuel pin cell. The whole array is surrounded by a layer 

of zirconium and an outer layer of water. Essential technical data of the model problem is 

given in Table 4.1. 

Since the publicly available version of the MAVRIC sequence does not have an eigenvalue 

solver and is currently limited to source-driven problems only, a fixed source subcritical 

configuration is analyzed. To overcome this limitation, a NEWT model is employed to 

approximate the fission source which is subsequently reduced by adjusting fuel enrichment to 

render a subcritical system. An isotropic fixed source distributed uniformly throughout the 

fuel pins is employed to find a physical flux solution. The fuel enrichment is adjusted 

rendering a k-effective value of 0.88. Five different fuel enrichments 0.33, 0.69, 0.94, and 

1.93% U-235 and 3% gadolinium are employed. The 27 neutron and 19 photon energy group 

libraries from SCALE [25] are employed for the analysis of the BWR model. For the flux 

and reaction rates responses, the first 14 neutron groups (10.678 20 eV E MeV  ) define 

the fast group and the last 13 groups ( 3.059 E eV ) are thermal.  

Both the FW-CADIS and the SUBSPACE methods are employed to analyze this model with 

equal number of histories. For each response type, e.g. flux, fission reaction rate, etc., two 

vectors each of 49 relative uncertainties (one for each fuel pin cell) are obtained from both 

the FW-CADIS and the SUBSPACE methods. Figs. 4.2 through 4.5 show the reduction of 

the relative reduction of uncertainty for the flux and reaction rates distribution at the 49 fuel 

pin sites. Let FW CADIS

i
  and SUBSPACE

i  denote the relative standard deviations for the i
th
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response - the relative standard deviation is the ratio of the response’s absolute standard 

deviation to the response’s mean value. The reduction in the relative standard deviation 

resulting from the use of the SUBSPACE method is defined by: 

 

*100%
FW CADIS SUBSPACE

i i
i FWCADIS

i

 




 
 

                                      (72) 

 

 

 

 

Fig. 4.2: Thermal and Fast Fluxes 
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Fig. 4.3: Thermal and Fast Fission Rates 

 

 

 

 

 

 
 

Fig. 4.4: Thermal and Fast Inelastic Scattering Rates 
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Fig. 4.5: Thermal and Fast Elastic Scattering Rates 

 

The results show that the SUBSPACE method produces lower variances for the thermal flux 

than FW-CADIS. This is due to the fact that the mean free path for the neutron in a thermal 

reactor is short which correlates each pin’s responses to its nearest neighboring pins. Fast 

neutrons however have longer mean free path and they are able to visit the entire assembly 

from their birth to their death, hence the assembly features are more smeared for fast 

neutrons than they are for thermal neutrons. Since the thermal flux has more significant 

meaning compared to the fast flux in reactor physics, therefore, in the following work, the 

thermal flux is always employed as an important quantity to compare the performance of 

FW-CADIS and SUBSPACE method. Table 4.2 provides a more detailed comparison 

between the two methods: 
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Table 4.2:     Performance Metrics for Hybrid Methods in Assembly Model 

Method 

Relative Standard 

 Variance 

Number of  

MC Particles 

DT Execution  

Time (sec) 

MC Execution 

 Time (min) 

FOM 

AVG STD 

FW-CADIS 0.2037 0.0454 1.00E+07 31.48 469.88 0.0513 

SUBSPACE 0.1182 0.0271 1.00E+07 173.36 581.42 0.1231 

 

The 2
nd

 column in the table labeled AVG is the average value of the relative standard 

deviations for all the I responses. Thermal flux is picked as the desired response for analysis. 

The STD column represents the standard deviation of the responses’ relative standard 

deviations (this is more commonly known as the square root of the variance of variances); it 

provides a measure of the spread of the standard deviations throughout the phase space. A 

large value for STD indicates that the responses variances are not uniformly reduced; 

therefore a small value would be considered more favorable. Mathematically, each of these 

metrics are defined as follows for a given method k, where k = FW-CADIS and SUBSPACE. 

                                                             1

1
AVG

I
k k
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The number of Monte Carlo particles employed by the FW-CADIS method is 10
7
 particles. 

The same number was used by the SUBSPACE method but distributed over 10 different runs 

(corresponding to an estimated rank of 10r  ) each with 10
6
 particles. The DT execution 

time for the FW-CADIS method is composed of one adjoint and one forward run.  

The SUBSPACE DT time is composed of 10 adjoint runs. The MC time is the time spent by 

the MONACO code
3
. Finally, the FOM (figure or merit) is based on the following formula: 

                                                          
 

2

1
FOM ,

AVG

k

k T


                                            

(75) 

where T is the total time including both the DT and MC times. Notice that the DT time is 

negligible compared to the MC time which is to be expected since all DT calculations are 

based on source driven models. These assembly results show a 2.5 speed up factor over FW-

CADIS results. Moreover, notice that the STD metric is reduced by the same amount as the 

AVG Metric, implying that the SUBSPACE method does reduce the variances in a uniform 

manner like the FW-CADIS method. 

 

 

                                                           
3 We noticed that the time spent by MONACO is always a bit higher when using the SUBSPCE method which implies the weights for the 

adjoint source are supplied by the user via the input file rather than evaluated directly by the code. To understand this, a weight-window 

map was generated using the same method employed by FW-CADIS, i.e. based on the inverse of the forward flux and was then manually 

fed into the MONACO code. We noticed that although that the same responses means and standard deviations were obtained as with the 
standard MAVRIC sequence, the time required was also higher like the SUBSPACE method. This implies that the MONACO code requires 

an additional time likely when reading the weight-windows from an input buffer. This is a minor issue and can likely be handled by 

experienced code developers. For the sake of current work, the higher times recorded by MONACO are employed in all FOM results, so 
slightly better results should be expected upon resolution of this issue. 
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4.1.1.2   Core Model 

The second numerical experiment employs a prototypical PWR full core model. It is 

designed as a slight variation to the benchmark problems presented in [34] and [35]. The full 

core model consists of 193 fuel assemblies (blue regions in Fig. 4.6) laid out in a 17×17 grid 

scheme and surrounded by light water (red regions in Fig. 4.6). 

 

  

 
Fig. 4.6:  PWR Full Core Model 
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Fig. 4.7:  UO2 Fuel Assembly 

 

 

                                       Fig. 4.8:  UO2-Gd2O3 Fuel Assembly 

 

The cubic volume of the whole active core is 365.6×365.6×335.3 cm
3
. The cubic volume of 

each assembly is 21.505×21.505×335.28 cm
3
. Two types of fuel assemblies are modeled 

(blue regions): a UO2 fuel assembly and a UO2-Gd2O3 fuel assembly. The loading pattern of 

the full core is shown in Fig. 4.6 and the loading pattern of each assembly type is plotted in 
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Fig. 4.7 and Fig. 4.8.  Each assembly consists of a 17×17 grid of pin cells with each pin cell 

measuring 1.265×1.265 cm
2
 in the X-Y plane. 

The reduction of relative uncertainties is associated with the assembly-homogenized thermal 

and fast fluxes and obtained by comparing the FW-CADIS and SUBSPACE methods. As in 

the previous section, it is calculated as: 

*100%
FWCADIS Subspace

i i
i FWCADIS

i

 





 

 

where  FWCADIS
i  and Subspace

i  are, respectively, the standard deviations for the i th assembly. 

The spatial dependence of the reduction of uncertainty across the whole core is plotted 

respectively for the thermal and fast fluxes in Fig. 4.9 and Fig. 4.10.  

The result shows that the SUBSPACE method gives a better performance than the FW-

CADIS method for thermal flux in all 289 assemblies with the maximum reduction of 

uncertainty up to 80%. For fast flux, FW-CADIS method performs better and the maximum 

reduction of uncertainty is up to 20%, specifically for assemblies adjacent to the core’s 

boundaries. Meanwhile, SUBSPACE method shows better results for the rest of the 

assemblies. This is very similar to the previously discussed BWR assembly model following 

the same reasoning that thermal neutrons feature shorter mean free paths that consequently 

restrict corresponding thermal responses to neighboring assemblies only. In contrast, fast 

neutrons are of longer mean free paths and would hence be more likely to travel throughout 

the whole core range. Fig. 4.9 shows that for both thermal and fast groups, reasonably 

uniform uncertainty reductions are obtained.  
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Between the boundary assemblies and the interior assemblies, the levels of uncertainty 

reduction are quite different. This is possibly because the boundary assemblies are moderator 

assemblies while the interior assemblies are fuel assemblies.  

In a similar manner to Table 4.2, the core model results of the thermal flux response are 

presented in Table 4.3. Notice that amount of reduction in terms of FOM is doubled as the 

size of the problem is increased. Although this may not sound intuitive at a first glance, but 

from previous experience, we have notice that as the size of the model is increased the 

potential for reduction via responses correlations is also increased. 

 

  

 

Fig. 4.9: Thermal and Fast Scalar Fluxes for Full Core 
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Fig. 4.10: Thermal and Fast Scalar Fluxes for Full Core 

 

Table 4.3:    Performance Metrics for Hybrid Methods in Core Model 

Method 

Relative Standard  

Variance 
Number of  

MC Particles 

DT Execution  

Time (sec) 

MC Execution 

 Time (min) 

FOM 

AVG STD 

FW-CADIS 0.904 0.133 1.0E+07 1.85  74.23 0.0165  

SUBSPACE 0.338 0.031 1.0E+07 9.59  97.45 0.897  
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4.1.1.3   Rank Estimate 

In this section we demonstrate the sensitivity of the variance reduction results to the rank 

estimate. As discussed earlier, one could employ a rigorous method to estimate the exact rank 

of the matrix Ψ  such as the range-finding algorithm described in the appendix. However in 

most applications employing Monte Carlo models, a small estimate of the rank should be 

sufficient. This is because the very first few singular values of the matrix Ψ  display a 

significant decline with the rate of decline decreasing with increased rank. To illustrate this, 

the algorithm in the appendix is employed to estimate the first 30 singular values of the 

matrixΨ . This could be achieved by executing the algorithm with different user-defined 

tolerance [36].  Notice that the singular values plotted in Fig. 4.11 fall down by three orders 

of magnitude by the time the tenth singular value is reached. After that, the singular values 

continue to fall down but at a much smaller rate. Given that the statistical uncertainties for 

the responses are expected to be in the 0.1% to 1% range, only the initial reduction in the 

singular values should be sufficient to estimate the rank. 

To analyze the impact of the rank estimate on the variance reduction results, the assembly 

and core models results, previously completed with r = 10, are repeated with different 

estimates for the rank. Fig. 4.12 plots the standard deviation for one of the responses as a 

function of the estimated rank. Results show that the initial decline in the standard deviation 

occurs over the first few singular values which is consistent with the shape of the singular 

values. After that the reduction in the standard deviation is negligible.  
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Fig. 4.11: Singular Values of the SRI Matrix 

 

Fig. 4.12: Variance Reduction Sensitivity to Rank Estimate. 
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4.1.2 GP Method Performance  

4.1.2.1 Assembly Model 

The 7x7 BWR assembly model introduced in the previous chapter is employed to compare 

the GVR performance of the SUBSPACE and the GP methods as a preliminary case study. 

The responses employed for the sake of comparison are the spatial thermal fluxes and various 

reaction rates densities at the 49 array locations. The run time for all adjoints and forward 

deterministic calculations were in the order of seconds. Therefore, the Monte Carlo model is 

found to dominate the total execution time which was in the order of hours. Hence the 

comparisons were based on the reduction in standard deviations only.  

Figure 4.13 compares the performance of the SUBSPACE and FW-CADIS methods in terms 

of the relative reduction in standard deviation defined by: 

Subspace FW-CADIS

FW-CADIS
100i i

i

 





 

 

 

Fig. 4.13 shows that the SUBSPACE method consistently reduces the standard deviation 

everywhere in the assembly model by approximately 40-50% as compared to the FW-CADIS 

method. If the same standard deviation is to be reached by both methods, a 50% reduction 

translates into 4 times reduction in the number of histories required by the MC’s law of large 

numbers. 

 



www.manaraa.com

85 
 

 

Fig. 4.13:  Standard Deviation Comparison for Thermal Fission Reaction Rate Density 

In a similar manner, Fig. 4.14 compares the performance of the SUBSPACE and GP methods 

by plotting the quantity:  

GP Subspace

Subspace
100i i

i

 





   

Results indicate that both the SUBSPACE and GP methods are close in performance. 

In our case study, the run time for all adjoints and forward deterministic calculations were in 

the order of seconds. The Monte Carlo model is found to dominate the total execution time 

which was in the order of hours. Hence for this proof of principle study, comparisons were 

based on the reduction in standard deviations only. 
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Fig. 4.14:  Standard Deviation Comparison for Thermal Flux 

4.1.2.2 Core Model 

For the purpose of comparison between SUBSPACE and GP methods, the responses of the 

spatial thermal and fast scalar fluxes at the 289 assembly locations in the full core are 

employed. Figs. 4.15 and 4.16 compare the performance of the SUBSPACE and GP methods 

by plotting the quantity: 

GP Subspace

Subspace
100i i

i

 





   

as similarly applied for the BWR assembly model. GP

i  and 
Subspace

i  are  the standard 

deviations for the i th assembly tally in the full core, respectively.  

Fig. 4.15 shows how the reduction of uncertainty varies for each assembly in the full core. 

Fig. 4.16 presents more information on the uniformity of the reduction throughout the core. It 

could be seen from Fig. 4.15 that in interior assemblies the reduction of uncertainty varies 
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from 0 up to 20% for both thermal group and fast group, while in boundary assemblies, the 

reduction of uncertainty changes from 0 down to -40% for thermal and fast group. It implies 

that GP method performs slightly better for boundary assemblies and SUBSPACE method 

has more advantages for interior assemblies. From Fig. 4.16, it is shown that for both 

boundary assemblies and interior assemblies, the reduction of uncertainty is of decent 

uniformity in each energy group. Generally, results have well indicated that the SUBSPACE 

and GP methods are comparatively close in performance for both thermal group and fast 

group in the PWR full core model. This is similar to the case study result of the BWR 

assembly model.  

 

Fig. 4.15:  Thermal and Fast Scalar Fluxes for Full Core 
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Fig. 4.16:  Thermal and Fast Scalar Fluxes for Full Core 

 

4.2. SUBSPACE Method Applied in Eigenvalue Calculations 

4.2.1 Monte Carlo in Criticality Calculations 

While the Monte Carlo method has been widely applied and demonstrated to be efficient in 

radiation transport, its realm of applicability for reactor analysis is typically limited, for 

example, to benchmark deterministic results at certain limited state-points for certain limited 

responses of interest. This is due to the restriction of the prohibitive computational 

requirements for obtaining a fully converged system-wide solution. Among all the associated 

challenges, the most significant challenge is that in actual reactor analysis where millions of 

different material, tally regions resolving regions of different fuel irradiation, and 

temperature distributions are involved, the estimates from the MC simulation result in a slow, 

non-uniform convergence. Concerning these difficulties, it is important to enable direct MC 
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application for core-level reactor analyses. In [52], it states that the current research has 

focused on two areas: (1) Hybrid Monte Carlo-deterministic methods for obtaining high-

precision fluxes throughout the phase space in k-eigenvalue problems. (2) Efficient Monte 

Carlo domain-decomposition algorithm to solve the problem with multiple processors for 

massively parallel systems. In this work, we focus on the first area as mentioned above.   

Monte Carlo methods have been applied in computing the fundamental mode eigenfunction 

of critical systems since the 1950s [53~56]. Many MC codes use the standard power method 

for computing Keff and solving k-eigenvalue problems such as MCNP [6] and KENO in the 

SCALE6.1 code package [25]. In these MC simulations, each iteration cycle corresponds to 

one single fission generation [51]. Power iteration is performed till the convergence is 

obtained for both Keff and the source distribution. After the convergence, responses of 

interest .e.g. flux and reaction rates are accumulated.  While this power iteration calculation 

is becoming routine in standard MC codes, three essential limitations restrict the fidelity of 

the calculation: (1)The initial source guess tends to influence the obtained results, therefore it 

is important to ensure sufficient initial cycles are discarded prior to the tally calculation. (2) 

In each cycle, it must be guaranteed that there are sufficient number of neutron particles, 

otherwise the bias in Keff and tallies of desired response will contaminate the result; (3) Bias 

in the uncertainties on Keff and responses of interest must be taken into account [51]. 

To address the above limitations in eigenvalue calculation, a trial run is usually performed to 

determine the number of cycles to be discarded before tally calculations.  For long 

production runs, a minimum 5000 neutrons per cycle should be applied to prevent bias in 
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Keff and tallies of response of interest. Furthermore, symmetric geometry is preferred as 

taking advantage of symmetry will reduce the bias in uncertainties as well as accelerating the 

convergence. For example, a quarter core model with reflective boundaries proves more 

efficient in reducing the problem dominance ratio than a full core model [51].  

In this chapter, the SUBSPACE method is extended and applied to enable global variance 

reduction for reactor analysis which require precise responses to be evaluated everywhere in 

the phase space by performing the k-eigenvalue simulation. A numerical experiment based 

on a quarter-core PWR model is discussed to compare the SUBSPACE and FW-CADIS 

methods in terms of the reduction in standard deviation of spatially distributed responses. As 

stated in Chapter 3, the SUBSPACE method belongs to the same adjoint-based family as 

FW-CADIS method. It identifies the correlations between weight window maps to minimize 

the computational time required for global variance reduction. The correlations are employed 

to reduce the number of maps required to achieve the same level of variance reduction that 

would be obtained with single-response maps.  

4.2.2  Implementation of the SUBSPACE Method  

In its standard form, the k-eigenvalue transport equation is written as: 

' ' ' ' ' '

' ' ' ' '

[ (r, E)] (r,E, )= (r, E ,  ) (r, E E, )d dE

1 ( )
                                           + (r, E ) (r, E , )d dE              
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It could be simplified as: 
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1
L =  ,  

eff

F
k

   

which is the problem usually solved in standard MC codes. 

Weight window based Monte-Carlo deterministic hybrid methods employ an approximate 

adjoint function tailored to the responses of interest: 

                                                             
,  u  

                                                        
(76) 

to assign a permissible range of weights to various regions in the phase space: If the particle 

weight is below the range it is rouletted and if it is above the range it is split. In global 

variance reduction responses are desired everywhere, i.e.  

       
, ,  and 1,...,       

i i
u i I                                       (77) 

such that a variance reduction scheme needs to develop an adjoint function accommodating 

all responses. The FW-CADIS method, introduced in previous chapters, has been 

successfully extended to address the k-eigenvalue problems [52]. This is realized by: 1. A 

forward eigenvalue deterministic calculation is performed to obtain a precise estimate of the 

space-energy-dependent fluxes; 2. A subsequent fixed-source deterministic adjoint 

calculation is conducted where the adjoint sources are weighted by the fluxes from step 1. As 

stated before, with the FW-CADIS method, the adjoint sources (one for each response) are 

weighted by the inverse of the forward quantity being sought, i.e. the following forward 

eigenvalue problem and the corresponding adjoint problem are solved: 
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where the standard transport theory notations from previous chapters are used.  

Meanwhile, the SUBSPACE method has also been extended to address the eigenvalue 

problems. In contrast to the FW-CADIS, the SUBSPACE method generates adjoint functions 

for pseudo-responses that are linear combinations of the original responses: 

,

1

              
I

j i j i

i

u u


                                            (80) 

 The linear combinations identify the minimum number of pseudo single-responses required 

to reach the same level of variance reduction that would be achieved if all single-response 

weight window maps are employed to reduce variances for all responses. Using the definition 

for 
ju from Eq. (80), one can write: 
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The adjoint flux map utilized for the SUBSPACE method is generated using the three-

dimensional discrete ordinates code Denovo [49].  

Similar to the FW-CADIS method, the optimization objective of the SUBSPACE method is 

the group-wise fluxes in fissionable regions instead of the eigenvalue[52]. Different from the 
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FW-CADIS method, instead of solving a forward eigenvalue problem, the SUBSPACE 

method solves a single adjoint fixed-source problem with the adjoint source being 

determined as derivatives of the pseudo responses with respect to the adjoint function. The 

adjoint function is then employed to compute the upper and lower weight window bounds 

and subsequently the weight window map is written in a format suitable for MCNP [6]. The 

Monte-Carlo computations are all performed using MCNP.   

4.2.3 PWR Quarter Core Model 

A three-dimensional quarter core PWR model is employed to compare the performance of 

the FW-CADIS and the SUBSPACE methods. The PWR quarter core model features a 

generic three-dimensional layout. The x-y-z dimensions are 204.25x204.25x335.28cm.  

The model consists of 48
 

 
 17x17 fuel assemblies, with 264 fuel rods per assembly and 3% 

uniform fuel enrichment. The adjoint fixed-source Denovo calculations use an S4 level 

symmetric quadrature and an 461 × 461 × 10 spatial grid resolving the unit-cells. The 27 

neutron and 19 photon energy group libraries included in the SCALE package are employed 

for generating the adjoint flux maps. For the flux and reaction rates responses, the first 14 

neutron groups (10.678eV<E<20MeV) define the fast group and the last 13 groups 

(E<3.059eV) are thermal. A cross sectional view of the model is presented in Fig.4.17, where 

green represents moderator and reflector (water) and red the fuel pins. 
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Fig. 4.17:  A Cross Section View of the 3-D PWR Quarter Core Model 

Continuous-energy MCNP5 simulations are conducted using 50,000 histories/cycle, 2500 

active cycles with 500 inactive cycles starting from an initially uniform fission source. FW-

CADIS and the SUBSPACE methods are applied respectively and a thermal flux energy 

binfrom 0.15 to 0.275ev is selected to compare the performance of two methods. The 

obtained results of the relative uncertainty associated with the thermal flux, for each method, 

are clearly illustrated along the z-dimension from -150.876cm to 150.876cm for each layer 

(1
st
 ~10

th
) in the model as shown in Figs. 4.18~4.27. The colorbar identifies the percentage of 

relative uncertainty. 
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Fig. 4.18:  Relative Uncertainty Distribution of Thermal Flux for 1
st
 layer  

 

 

Fig. 4.19:  Relative Uncertainty Distribution of Thermal Flux for 2
nd

 layer  

 

 

Fig. 4.20:  Relative Uncertainty Distribution of Thermal Flux for 3
rd

 layer  
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Fig. 4.21:  Relative Uncertainty Distribution of Thermal Flux for 4
th

layer  

 

 

Fig. 4.22:   Relative Uncertainty Distribution of Thermal Flux for 5
th

 layer  

 

Fig. 4.23:   Relative Uncertainty Distribution of Thermal Flux for 6
th

 layer  
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Fig. 4.24:   Relative Uncertainty Distribution of Thermal Flux for 7
th

 layer  

 

 

Fig. 4.25:   Relative Uncertainty Distribution of Thermal Flux for 8
th

 layer  

 

 

Fig. 4.26:  Relative Uncertainty Distribution of Thermal Flux for 9
th

 layer  
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Fig. 4.27:  Relative Uncertainty Distribution of Thermal Flux for 10
th

 layer 

The distribution of relative uncertainties for thermal flux in the given energy bin is plotted in 

the Fig. 4.28 for the fifth layer of the model. Only the cells within the reactor core (i.e. 

excluding the reflector) are taken into account. It is clearly shown that both the FW-CADIS 

and the SUBSPACE method obtain the same number of cells (9000~10000) with relative 

uncertainty between 0~0.2%.   

 

 

Fig. 4.28:  Histogram of Relative Uncertainty Distribution  
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To make the comparison more straight-forward, the standard deviation and the mean value of 

the distribution of variance obtained with FW-CADIS and SUBSPACE method respectively 

are calculated as shown in Table 4.4.  For reference, the analog results are also provided. 

When applying the SUBSPACE method, the obtained mean value of variance is 0.0181; 

while the mean value of variance obtained by performing FW-CADIS method is 0.0346, 

which is 91% higher. The SUBSPACE method also generates a standard deviation of the 

variance distribution which is 48% lower compared to the same quantity generated by FW-

CADIS. Based on these two quantities, it is safe to claim the SUBSPACE method obtains 

responses of interest of higher accuracy compared to the FW-CADIS method.   

Table 4.4: Standard Deviation and Mean Value of the Variance Distribution 

 Stdev of variance Mean of variance 

FW-CADIS 0.1503 0.0346 

SUBSPACE 0.1017 0.0181 

Analog 0.2145 0.0588 

 

In order to compare the efficiency, the global FOMs of the two methods need to be calculated. 

The execution time of each method is listed in Table 4.5. For the Denovo computation, since 

the SUBSPACE-based cases run in parallel on multiple processors, the total time is taken as 

the time associated with the longest run among the 30 parallel jobs.  
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This follows from the fact that the user cannot proceed with his analysis unless all parallel 

jobs finished such that the longest running job limits the user’s ability to accelerate the 

analysis procedure. This is based on the definition of parallel computing [8]. It is worth 

mentioning that the Denovo time consumed by applying the SUBSPACE method is about 

1/30 of the Denovo time by applying the FW-CADIS method.  This could be explained by 

two reasons: 1.The parallelization associated with applying the SUBSPACE method 

enhances the computational efficiency; 2. FW-CADIS performs a forward eigenvalue 

calculation as the basis of solving the adjoint problem. However, in realistic and complicated 

core-level systems with millions of cells, the forward eigenvalue calculation generally takes a 

significant amount of time and therefore the total computational efficiency deteriorates.  

The global FOM is calculated as the inverse product of the mean value of variance 

distribution and total execution time, which is the sum of the Denovo execution time and the 

MCNP execution time: 

1

( )Denovo MCNP

FOM
v t t




 

For the analog run, the total time equals to the MCNP execution time. The global FOM when 

applying the SUBSPACE method is 0.0649 while the global FOM of the FW-CADIS method 

is 0.0071. The analog MCNP results in a global FOM value of 0.000698.  

Therefore, the SUBSPACE method shows a speed-up of 9 over the FW-CADIS method and a 

speed-up of 93 over the analog.  
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Table 4.5: Execution Time and Global FOM 

Execution Time FOM 

 Denovo MCNP Total 

SUBSPACE 90.83min 761.76min 852.59min 0.0649 

FW-CADIS 2883.05min 1208.91min 4091.96min 0.0071 

Analog N/A 24364.05min 24364.05min 0.000698 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

102 
 

CHAPTER 5      

CROSS SECTION FUNCTIONALIZATION  

5.1 Cross Section Functionalization  

First a brief overview is given on the standard reactor physics methodology and short 

description is provided of the GVR methodology employed in this work.  

The routine execution of a detailed model for the entire reactor core which resolves all the 

fuel pins details in all the fuel assemblies is still considered challenging even with access to 

leadership computing resources. To overcome this challenge, reactor physicists devised a 

multi-level homogenization method to help reduce the dimensionality of the problem. In this 

method, the reactor core domain is divided up into smaller regions, often chosen to represent 

full or parts of a fuel assembly taken at different axial levels. Lattice physics (or assembly) 

calculations are used to analyze these regions in more detail, often done with many energy 

groups and fine spatial and angular mesh. The flux solution from lattice physics calculations 

is used to generate cross-sections that are homogenized over coarser energy groups and 

spatially over each region in a manner that preserves reaction rates over the various regions. 

The few-group cross-sections are then used in core-wide simulation where the geometrical, 

energy, and spatial details of the regions are now smeared which reduces the effective 

dimensionality of the core-wide problem.  

Given the dependence of the flux solution from lattice physics calculations on the isotopic 

concentration, the fuel temperature, the coolant temperature and/or voiding, presence of 

poison in the coolant, amount of control rod insertion, etc., the few-group cross-sections must 
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be generated at a matrix of different conditions to enable interpolation of the correct value for 

core-wide simulation. This is a formidable task as for typical LWR models the number of 

these conditions is overwhelmingly large.  

Take for example a BWR model: One typically has in the order of 30 lattice designs, each 

depleted using lattice physics calculations to end of life with about 50 depletion steps. This is 

often repeated with 3 different voiding histories, e.g. no voiding, medium voiding, and high 

voiding. This is important as the increased voiding affects the spectrum and subsequently the 

depletion characteristics. At each depletion step, about 5 different branch calculations are 

executed. In each branch calculation, one parameter, e.g. fuel temperature increase or 

decrease, control rod insertion, etc., is changed and another flux solution is obtained. The 

total number of flux solutions for a typical BWR is 30 x 50 x 3 x 5 = 22500. If each flux 

solution takes in the order of few seconds, which is possible with highly customized 

commercial codes, these calculations can be completed over a short period of time.  

With MC models however, unless one has a reasonably fast convergence scheme, the use of 

MC would be infeasible for routine reactor physics calculations. 

To address this challenge, variance reduction techniques have been developed to accelerate 

Monte Carlo convergence. The idea is that if one has an approximate idea about the solution, 

one can use that knowledge to bias MC particles. For adjoint-based variance reduction 

techniques, which represent our current interest, a simplified deterministic model is used to 

calculate an adjoint flux for the response of interest, say a detector response placed 

somewhere in the reactor core. Given that the adjoint flux can be shown mathematically to 
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describe the importance of particles at different points in the phase space, one can design 

weight window maps based on the adjoint information to bias MC particles. This is done by 

splitting particles that are important and playing Russian roulette with particles that are less 

important. The idea has been successfully demonstrated in the FW-CADIS methodology, 

which generalizes the idea of variance reduction to problems with global responses, i.e., that 

is when responses are desired everywhere in the phase space. This is done by employing an 

additional deterministic forward flux solution to assign more weight to regions with low flux 

and less weight to regions with high flux which renders a uniform variance reduction over all 

responses of interest. An assembly model represents such an example where the flux is 

required everywhere in the assembly to properly homogenize the cross-sections. 

The SUBSPACE method, as introduced in previous chapters, is applied to perform GVR with 

three primary advantages over existing FW-CADIS methodology. First, the forward flux 

solution is not required, which results in considerable time savings especially for eigenvalue 

problem with dominance ratio close to unity. Second, via the use of the pseudo responses, 

representing random linear combinations of the original responses, the number of MC  

particles required to reach a given level of variance reduction is significantly reduced. Finally, 

the method allows one to split the total number of MC particles over multiple trains of MC 

simulation, which improves the efficiency of the methods by allowing one to take advantage 

of parallel computing environment.  

In previous chapters, the figure of merit (FOM) of the SUBSPACE method is calculated, 

which was found to be in the range of 2-10 times faster than the FW-CADIS method. The 
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lower range for the gain is for source-driven problems with small dimensionality in terms of 

the responses and the complexity of the geometry and energy details. The gain increases as 

the dimensionality of the model increases and reaches its maximum particularly for core-

wide eigenvalue problems. 

5.2 Implementation of the SUBSPACE Method 

The goal of this exercise is to use Monte-Carlo methods to generate homogenized few-group 

cross sections thus replacing the standard deterministic lattice codes used today. The 

responses of interest in this task are homogenized and collapsed cross sections given by the 

general form: 

, ,, /  ,x g g x g g    
 

where x denotes the reaction type (x=fission, capture, scattering). However, using this 

response to directly bias particles via the adjoint methodology would be difficult.  

Following the methodology, the derivative of the response with respect to the flux is used to 

construct the adjoint source. However, the derivative of the homogenized cross section with 

respect to the flux can be negative which might lead to negative adjoint sources. Negative 

sources are, however, are bound to lead to problems with the biasing procedure. Therefore, 

we tailor an adjoint source for the all reaction rates: 

,      x xR    
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which homogenized cross sections are desired for. In addition we add the flux because it 

appears in the denominator of the cross section thus bears significance for its accuracy.  The 

global aspect of the GVR problem now does not only lie in the spatial extent of the problem 

but also to simultaneously optimize various reactions rates and the flux. 

The proposed GVR method: the SUBSPACE method, is based on a mathematical method 

that takes advantage of the correlation between the various responses. Mathematically, this is 

realized by generating adjoint functions for pseudo-responses which are random linear 

combinations of the original responses: 

,

1

             
I

j i j i

i

u w u



                                       

(83) 

The linear combinations identify the minimum number of pseudo responses required to reach 

the same level of variance reduction that would be achieved if all single-response weight 

window maps are employed to reduce variances for all responses one at a time.  

The pseudo response would correspondingly be described as: 

, ,,   x x g g x g

g x

u w    
                                   

(84) 

where x now stands for x=fission, capture, scattering and flux (note: sigma_flux = 1). The 

adjoint source is equal to: 

 

* *

, ,   x

x x g x g

g x

u
L w


 






                                  

(85) 
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Therefore, given the desired problem-specific cross section as the response of interest, the 

pseudo response is constructed as a linear combination of weighted original cross section 

responses from given libraries. For the SUBSPACE method, the weighting factors are 

randomly sampled and the algorithm is applied to obtain the optimized number of 

correlations between responses. For the FW-CADIS method, the weighting factors are 

obtained from a forward calculation and calculated as the inverse of the response, in this case: 

the reaction rate.  

5.3 PWR Assembly Model 

The current reactor physics analysis comprises a stage in which the transport equation is 

solved for a single assembly. The goal of this stage is to obtain collapsed and homogenized 

cross sections sets for a subsequent core-wide coarse mesh diffusion calculation. In order to 

compare the performance of Monte-Carlo and deterministic calculations, macroscopic cross-

sections are homogenized over the entire assembly for a simplified PWR assembly model. In 

this work, the deterministic calculation is done by NEWT (New ESC-based Weighting 

Transport code) from SCALE 6.1 code package by ORNL [60]. 

The NEWT computer code is a multi-group discrete-ordinates radiation transport code with 

flexible meshing capabilities that enables two-dimensional neutron transport calculations 

using complex geometric models. In particular, NEWT proves useful in eigenvalue and 

source calculations as well as in preparing collapsed, flux-weighted cross sections in AMPX 

working library format. Compared to Denovo, NEWT allows more flexibility in defining 

boundary conditions. Furthermore, NEWT has also been incorporated into the TRITON 
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sequence of SCALE6.1 [61] serving as a flux-solver for depletion calculations. When used in 

depletion mode under TRITON, which is a two-dimensional transport and depletion module 

for characterization of spent nuclear fuel, NEWT could be used to generate lattice-physics 

cross sections for subsequent core calculations. The Monte-Carlo calculations are performed 

by MCNP5. Both the analog and the GVR (global variance reduction) technique based 

Monte-Carlo simulations are performed. The GVR technique applied in this work is the 

SUBSPACE method. 

The assembly model employed is a PWR UO2 fuel assembly featuring 17x17 pin cells as 

shown in Fig. 5.1. Red stands for moderator, green stands for UO2 fuel and blue stands for 

UO2-Gd2O3 fuel. The assembly pitch is 21.505cm. The fuel rod pitch is 1.265cm and the 

thickness of cladding is 0.064cm. The outer diameter of the pellet is 0.824cm. The inner and 

the outer diameter of the cladding are 0.824cm and 0.952cm respectively. The gap in-

between fuel and cladding is ignored. The average U235 enrichment is 6.2 wt%. The 

assembly is composed of UO2 and UO2-Gd2O3 (Gd) fuel rods. The assembly model is 

simulated under the hot condition with the pellet temperature at 900 K and the moderator 

temperature at 600 K [35].  
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Fig. 5.1:  PWR Assembly Model 

Collapsed (two-group format) and homogenized fission, capture and total cross sections are 

prepared using (1) NEWT (2) analog MCNP and (3) SUBSPACE MCNP in a two-group 

format. The thermal group ranges from 0 through 0.625eV and the fast group comprises the 

energy range above 0.625eV.  

For the analog Monte-Carlo and the deterministic calculation, the obtained cross section data 

values are very close to each other as shown in Table 5.1. The difference in percent of the 

obtained cross section values range from 0.6423% (total cross section for the fast group) to 

6.3818% (fission cross section for the thermal group) as listed in Table 5.2.  

For the analog Monte-Carlo and the SUBSPACE-based Monte-Carlo calculation, the 

obtained cross section data values are nearly identical to each other (Table 5.1).  
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The discrepancy of cross section data presented in Table 5.2 varies from 0.0031% (fission 

cross section for the fast group) to 0.0330% (capture cross section for the thermal group). 

These results demonstrate that a much stronger resemblance exists between the analog 

Monte-Carlo and the variance technique based Monte-Carlo compared to the analog Monte-

Carlo and the deterministic calculations. This could be explained by the error naturally 

associated with the deterministic calculation. The analog Monte-Carlo simulation completes 

8000 cycles, 20000 histories per cycle in 1657.8 minutes while the SUBSPACE-based 

Monte-Carlo simulation completes the same number of histories in 178.3 minutes. Given that 

the uncertainties associated to the cross section values in both cases are below 0.1% and 

could be safely considered at the same level, the SUBSPACE method shows a speed-up of 

9.3. It should be noticed that the reason why both the analog and the biased Monte-Carlo 

simulation obtain the same level of uncertainty is because in this work, the response of 

interest is one single response (homogenized cross section) and consequently every particle 

counts towards the desired response. Therefore the analog Monte-Carlo performs alright in 

this case. In previous chapters, it has been shown that in a more complicated quarter-core 

model, given the thermal flux everywhere as the response of interest, the SUBSPACE 

method could achieve a speed-up that is close to 100 over the analog Monte Carlo.  

 

 

 



www.manaraa.com

111 
 

 

 

 

Table 5.1: Cross Section Data  

Analog_MCNP XSection 

 Total Fission Capture 

Fast group 0.3337 0.0039 0.0067 

Thermal group 0.8300 0.0891 0.0665 

SUBSPACE_MCNP XSection 

 Total Fission Capture 

Fast group 0.3337 0.0039 0.0067 

Thermal group 0.8299 0.0890 0.0665 

NEWT XSection 

 Total Fission Capture 

Fast group 0.3316 0.0038 0.0068 

Thermal group 0.8224 0.0834 0.0645 
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Table 5.2:  Difference compared to Analog in percentage (%) 

SUBSPACE_MCNP XSection 

 Total Fission Capture 

Fast group 0.0034 0.0031 0.0088 

Thermal group 0.0081 0.0176 0.0330 

NEWT XSection 

 Total Fission Capture 

Fast group 0.6423 2.5519 2.2611 

Thermal group 0.9115 6.3818 2.9869 

 

The PWR assembly is now depleted and the numerical experiment previously performed for 

the undepleted assembly is repeated. The depletion process comprises a five-cycle depletion 

case executed by the TRITON sequence in the SCALE code package [61]. The TRITON 

control module can be used to provide automated, problem-dependent cross-section 

processing followed by calculation of the neutron multiplication factor for a 2-D 

configuration using NEWT.  Used in conjunction with NEWT, TRITON could perform 2-D 

lattice calculations for non-traditional lattice designs such as hexagonal arrays. Moreover, 

TRITON is able to provide reliable transport modeling accuracy such as to predict the burnup 

of nuclear materials in configurations that have a strong spatial dependence on the neutron 

flux and other physics parameters characterizing the system.  
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During the depletion study Triton alternates calls to NEWT and ORIGEN to compute the 

fluxes everywhere in the assembly and to advance time, respectively, using a predictor-

corrector algorithm. Given these abilities, TRITON is chosen as the primary code to perform 

the depletion simulations in this work.  

The depletion study is initialized with the assembly operating at a power level of 21.220 

MW/MTHM for a period of 100 days. This is followed by four identical cycles of operation 

each of a 100-day period. For the depletion purpose, the 289 pin cells are divided into 9 

groups based on different material as shown below. The macroscopic cross sections are 

tallied for each group of pin cells separately.  

         

Fig. 5.2:  Depletion Pattern of the PWR Assembly Model  

The changes of the level of nuclides (Plutonium and Uranium for example) throughout the 

five-cycle-depletion are also plotted below to show how the isotropic compositions evolve: 
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Fig. 5.3:  Isotopes of Uranium through the five-cycle-depletion 

 

Fig. 5.4:  Isotopes of Plutonium through the five-cycle-depletion 
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Based on the Triton depletion results, the number densities of each nuclide are computed at 

each separate depletion cycle for the subsequent Monte Carlo calculation. The Monte Carlo 

calculations are performed using MCNP5; we tally group-wise homogenized macroscopic 

cross sections for each separate depletion cycle. Both analog and GVR (global variance 

reduction) accelerated Monte-Carlo simulations are performed. The GVR technique applied 

in this work is the SUBSPACE method introduced in Chapter 4, which is an adjoint-based 

technique that utilizes pseudo responses generated with random weights to help identify the 

correlations between the importance maps and thus reduce the computational time required 

for global variance reduction. 

Utilizing the SUBSPACE method, two types of weight window are employed to compare the 

efficiency: 1. A general weight window that is generated for the undepleted, homogenized 

assembly; 2. The optimized weight window that is generated for each depletion cycle 

specifically. For case 1 the same general weight window is applied for all the 5 depletion 

cycles, while for case 2 five different optimized weight windows are applied to each 

corresponding depletion cycle separately.  

For both the analog and the biased MCNP runs, 5200 cycles, 20000 histories per cycle are 

performed. Fission, absorption, scattering and total cross section data are obtained for each 

depletion cycle, each material group and each energy group (thermal: 0~0.625eV and fast: 

0.625ev~20MeV).  Comparing the analog and the biased computations, the obtained results 

are close enough to be safely considered identical. Taken fission cross section for example, 

as presented from Table 5.3 to 5.6, the maximum difference between the analog results and 



www.manaraa.com

116 
 

the results employing the general weight window is less than 1.5% for the thermal group and 

less than 0.05% for the fast group. The same proximity is observed between results obtained 

by employing the general weight window and results obtained by the optimized weight 

windows. Therefore, it could be claimed that analog, general weight window and optimized 

weight window calculations generate the same sets of cross section data. 

Table 5.3:  Difference compared to General Weight Window for Fast Group 

 Depletion 

Cycle  

1(%) 

Depletion 

Cycle  

2(%) 

Depletion  

Cycle 

 3(%) 

Depletion  

Cycle  

4(%) 

Depletion  

Cycle  

5(%) 

Material 1 0.0213 0.0096 0.0073 0.0074 0.0425 

Material 2 0.0280 0.0024 0.0048 0.0024 0.0025 

Material 3 0.0068 0.0162 0.0234 0.0119 0.0288 

Material 4 0.0299 0.0281 0.0071 0.0096 0.0122 

Material 5 0.0046 0.0564 0.0119 0.0218 0.0123 

Material 6 0.0113 0.0092 0.0186 0.0259 0.0286 

Material 7 0.0537 0.0640 0.0283 0.0211 0.0210 

Material 8 0.0036 0.0214 0.0178 0.0000 0.0035 

Material 9 0.0072 0.0143 0.0107 0.0142 0.0035 

Material 10 0.0213 0.0096 0.0073 0.0074 0.0425 

 

 

 

 

 

 



www.manaraa.com

117 
 

Table 5.4:  Difference compared to General Weight Window for Thermal Group 

 Depletion 

Cycle 

 1(%) 

Depletion 

Cycle  

2(%) 

Depletion  

Cycle 

 3(%) 

Depletion  

Cycle  

4(%) 

Depletion  

Cycle  

5(%) 

Material 1 1.1806 1.1435 0.9210 0.4037 1.0300 

Material 2 1.1711 0.0637 0.2474 1.3985 0.7313 

Material 3 1.0180 0.1162 1.0399 0.9323 0.3871 

Material 4 0.2414 1.2394 0.6126 1.3196 1.4935 

Material 5 0.3778 0.2827 1.6882 1.1380 0.1592 

Material 6 0.5834 1.1277 1.1778 1.2481 0.1442 

Material 7 0.1601 1.0984 0.9221 1.3220 1.4429 

Material 8 0.3760 0.9207 1.4785 1.4647 0.7187 

Material 9 0.4252 0.5062 0.6405 0.5822 0.1021 

Material 10 1.1806 1.1435 0.9210 0.4037 1.0300 

 

 

 

Table 5.5:  Difference compared to Optimized Weight Window for Fast Group 

 Depletion 

Cycle  

1(%) 

Depletion 

Cycle  

2(%) 

Depletion 

 Cycle  

3(%) 

Depletion  

Cycle  

4(%) 

Depletion  

Cycle 

5(%) 

Material 1 0.028 0.012 0.012 0.037 0.005 

Material 2 0.037 0.012 0.005 0.015 0.005 

Material 3 0.014 0.014 0.002 0.009 0.017 

Material 4 0.037 0.023 0.007 0.019 0.022 

Material 5 0.000 0.012 0.029 0.036 0.012 

Material 6 0.018 0.014 0.021 0.021 0.031 

Material 7 0.014 0.039 0.014 0.014 0.025 

Material 8 0.000 0.004 0.039 0.007 0.004 

Material 9 0.000 0.029 0.036 0.018 0.011 

Material 10 0.028 0.012 0.012 0.037 0.005 
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Table 5.6:  Difference compared to Optimized Weight Window for Thermal Group 

 Depletion 

Cycle  

(%) 

Depletion 

Cycle  

2(%) 

Depletion  

Cycle  

3(%) 

Depletion  

Cycle  

4(%) 

Depletion 

 Cycle  

5(%) 

Material 1 0.168 0.721 0.757 0.863 0.922 

Material 2 1.310 0.656 0.058 1.112 1.047 

Material 3 0.250 0.792 0.036 1.249 0.359 

Material 4 0.563 1.354 0.611 1.157 0.676 

Material 5 0.145 0.676 0.316 0.611 0.959 

Material 6 0.010 0.066 1.155 0.859 0.781 

Material 7 1.324 0.545 1.153 0.558 1.009 

Material 8 0.447 0.702 0.746 1.244 1.670 

Material 9 0.103 0.959 1.426 1.272 1.403 

Material 10 0.168 0.721 0.757 0.863 0.922 

 

In Table 5.7 and Table 5.8, the execution time for each method is presented in minutes. The 

data from Table 5.3 and Table 5.4 suggest a speedup between 7~8 is observed compared with 

respect to the analog runs. It is also observed that the speedups obtained when applying 

general weight windows and when applying optimized weight windows are very close. 

Therefore, we can conclude that two types of weight window are comparable. Since it is way 

more expensive to generate five optimized weight windows than generating one weight 

window, the general weight window significantly improves the efficiency and could be 

applied in more complicated reactor calculations.  
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Table 5.7:  Execution Time Applying Single Weight Window 

 Depletion 

Cycle 1 

Depletion 

Cycle 2 

Depletion 

Cycle 3 

Depletion 

Cycle 4 

Depletion 

Cycle 5 

analog 19437 19366 19817 19612 19530 

General ww 2337 2717 2445 2336 2681 

speedup 8.31 7.12 8.10 8.39 7.28 

 

Table 5.8: Execution Time Applying Multiple Weight Windows 

 Depletion 

Cycle 1 

Depletion 

Cycle 2 

Depletion 

Cycle 3 

Depletion 

Cycle 4 

Depletion 

Cycle 5 

analog 19437 19366 19817 19612 19530 

Optimized ww 2112 2419 2319 2301 2412 

speedup 9.20 8.00 8.54 8.52 8.09 

 

 

 

 

Fig. 5.5:  Speedup of Different Weight Windows through the five-cycle-depletion 
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5.4 Cross Section Functionalization on BWR Assembly Model  

A peach-bottom 7*7 BWR assembly model is employed and rebuilt for our purposes. The 

assembly model represents the southeast assembly of a typical 2x2 BWR control cell which 

contains four assemblies and a cruciform control blade that is not modeled within the scope 

of this work. The BWR assembly contains 49 fuel rods in a regular 7x7 fuel rod array. Each 

fuel pin is assigned with a unique fuel composition. The moderator around the fuel pin is 

separated into unit cells. The 49 unit cells are tallied and homogenized independently as 

shown in the Fig. 5.6: 

 

Fig. 5.6:  BWR Assembly Model 
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Table 5.9:     BWR Model Specification 

Assembly Pitch (cm) 15.24 

Fuel Pitch (cm) 1.8745 

Fuel Rod Diameter (cm) 1.2116 

Cladding Thickness(cm) 0.1092 

Canning Thickness (cm) 0.2032 

Material Temperature (K) 552.833 

 

The BWR model is implemented in both MCNP and NEWT computer codes. Both codes 

obtain the identical Keff proving consistency of the two models. NEWT is a multigroup, 

discrete-ordinates radiation transport code that could be used to prepare collapsed weighted 

cross sections and perform fixed-source and eigenvalue calculations. Compared to the 

Denovo code from the previously used MAVRIC sequence, NEWT allows the user to define 

the boundary conditions more accurately. 

The 44-group SCALE library is employed and collapsed into thermal group and fast group. 

The thermal group ranges from 0 through 0.625eV and the fast group comprises the energy 

range above 0.625eV. Collapsed cross sections for each energy group are obtained from the 

44-group library. An importance map is created based on a NEWT adjoint fixed-source 

calculation where the sources are constructed from the numerical values of the collapsed 

cross sections from 44-group library. The importance map is consequently used in the MCNP 
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calculation and for each material in the assembly the desired responses: functionalized cross 

sections are obtained.   

The material representing unit cell 1 in the assembly serves as an example to compare the 

performance of different hybrid methods. The analog Monte Carlo simulation completes 

2000 active cycles, 20000 histories per cycle in 351.02 minutes. When applying the 

SUBSPACE method, the same number of histories is completed in 131.14 minutes and 

applying FW-CADIS it is completed in 99.72 minutes.  

The relative uncertainties of the obtained numerical results are shown in Table 5.10 for 

thermal and fast energy groups. The SUBSPACE method obtains an average uncertainty 

level that is 2~3 times lower compared to the analog for the fast group and 4~5 times lower 

for the thermal group. Meanwhile, the SUBSPACE method also shows a better performance 

in reducing uncertainty compared to the FW-CADIS method.  

The results of the global FOM are shown in Table 5.11. The global FOM is calculated as: 

log
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It is seen that for thermal group, SUBSPACE method obtains a speedup between 32~38 over 

the analog and for the fast group a speedup between 9~16 over the analog.  
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Table 5.10:  Relative Uncertainty of Homogenized Cross Sections  

 Fast Group Thermal Group 

 Analog SUBSPACE FW-CADIS Analog SUBSPACE FW-CADIS 

Fission 0.103% 0.050% 0.072% 0.106% 0.028% 0.042% 

Capture 0.206% 0.085% 0.117% 0.106% 0.028% 0.042% 

Scattering 0.078% 0.042% 0.057% 0.099% 0.028% 0.042% 

 

Table 5.11: Global FOM of Homogenized Cross Sections  

 Fast Group 

 Analog SUBSPACE Speed-up Analog FW-CADIS Speed-up 

Fission 2.68E+03 3.05E+04 11.35 2.68E+03 1.92E+04 7.18 

Capture 6.70E+02 1.04E+04 15.58 6.70E+02 7.31E+03 10.92 

Scattering 4.67E+03 4.23E+04 9.07 4.67E+03 3.13E+04 6.71 

       

 Thermal Group 

 Analog SUBSPACE Speed-up Analog FW-CADIS Speed-up 

Fission 2.52E+03 9.53E+04 37.81 2.52E+03 5.57E+04 22.10 

Capture 2.52E+03 9.53E+04 37.81 2.52E+03 5.57E+04 22.10 

Scattering 2.90E+03 9.53E+04 32.79 2.90E+03 5.57E+04 19.16 
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Fig. 5.7: Reduced Percentage of Relative Uncertainty in GVR Calculations  

 

 

Fig. 5.8: GVR Calculation Speedup for Fast Group 
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Fig. 5.9: GVR Calculation Speedup for Thermal Group 

5.5    Depletion Study on BWR Assembly Model  

The 7x7 BWR assembly model described in Section 5.4 is employed in this section for 

demonstrating the feasibility of the Subspace method in a depletion study. The depletion 

calculation is conducted by TRITON. The 44 group energy library from SCALE, as 

introduced in Section 5.4, is employed and collapsed into thermal 0~0.625eV and fast 

0.625ev~20MeV groups. The 49 fuel pins are divided into 8 groups based on the different 

composition for depletion purpose as shown in Fig. 5.10. The assembly model is simulated 

under hot condition with a pellet temperature of 900 K and a moderator temperature at 600 K. 

A constant power level of 45.220 MW/MTU is maintained during the depletion which is split 

over 5 depletion cycles, each spanning a 100 days period. Throughout the 5 depletion steps, 

the computed multiplication factor decreases from 1.08682 to 0.92166. The Burnup level 

increases from 1.13 GWd/MTU to 19.2 GWd/MTU as shown in Fig. 5.11. Fig. 5.12 serves as 

an example to show how the level of uranium isotopes evolves throughout depletion.  
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The Monte Carlo calculations are performed using MCNP5. The SUBSPACE method is 

implemented for representing GVR methodology. Since the assembly level homogenized 

cross section is chosen as the response of interest, the pseudo response is constructed as a 

linear combination of weighted original cross section responses from the SCALE library. The 

analog Monte Carlo is performed independently for comparison. For each depletion cycle, 

20000 histories/cycle and 2000 active cycles are completed in MCNP simulation.  

As demonstrated in Section 5.4, a single weight window in Monte Carlo simulation proves as 

accurate as multiple specified weight windows for all the depletion cycles. Therefore to 

guarantee the maximum efficiency, in this work a single averaged weight window is 

constructed for all the depletion cycles employing the SUBSPACE method.   

The number densities of nuclides are obtained for each depletion cycle from the TRITON 

execution and different depletion scenarios are built. For each depletion scenario, an adjoint 

fixed source problem, where the SUBSPACE pseudo response is constructed by linearly 

combining original cross section data from the library, is solved and the corresponding 

importance map is obtained. Multiple importance maps (3~5 per depletion cycle) are 

generated employing the SUBSPACE method to represent the complete depletion process.  

All the importance maps are then linearly combined into one single importance map, based 

on which an “average” weight window is constructed for the following Monte Carlo 

simulations.  To compare the performance of the SUBSPACE method versus the analog, the 

figure of merit for group flux and reaction rates (fission, capture, scattering) at each depletion 

level are calculated as: 
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For the SUBSPACE method, the total time is the sum of the deterministic calculation time 

from the adjoint fixed-source run by NEWT and the Monte Carlo calculation time from the 

MCNP simulation. For the analog, the total time is the Monte Carlo calculation time by 

MCNP. The final execution times of SUBSPACE and analog are listed in Table 5.13. 

The FOM results are shown in Table 5.14 to 5.17. The speedups of FOM obtained by 

employing the SUBSPACE method are plotted in Fig. 5.13 to Fig. 5.16 to show how the 

FOM speedup evolves throughout the depletion cycles.  

For both flux and reaction rates including fission, capture and scattering, the FOMs obtained 

when applying the SUBSPACE method gain a speedup that is between 40~50 for the thermal 

group and between 10~20 for the fast group compared to the analog FOMs.  

In Fig. 5.13 to 5.16, it is shown that the speedups distribute evenly through the complete 

depletion process instead of showing an explicit increasing or decreasing trend. This well 

demonstrates the consistency of the performance of the single average weight window for all 

the depletion scenarios.  
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Fig. 5.10:  Depletion Pattern of BWR Assembly Model 

 

Table 5.12: Burnup through Depletion Cycles  

Depletion Cycle Depletion Days Burnup (GWd/MTU) 

1 25 1.13 

2 125 5.65 

3 225 10.2 

4 325 14.7 

5 425 19.2 
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Fig. 5.11:  Burnup through Depletion Cycles 

 

 

Fig. 5.12:  Isotopes of Uranium through Depletion Cycles 



www.manaraa.com

130 
 

Table 5.13: Total Execution Time of Depletion Calculations 

 

Depletion Cycle 

Total Execution Time (mins) 

Analog SUBSPACE 

1 402.65 120.37 

2 421.65 135.23 

3 441.83 146.08 

4 472.17 165.20 

5 521.18 178.95 

 

Table 5.14: The FOM Comparison of Flux 

 

Depletion 

Cycle 

FOM SUBSPACE Speedup 

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal 

No depletion 9934.2 5068.5 92304.0 207684.0 9.3 41.0 

1 9934.2 5068.5 82161.1 207684.0 8.3 41.0 

2 6287.0 6287.0 76059.9 207684.0 12.1 33.0 

3 5883.0 5883.0 67257.2 207684.0 11.4 35.3 

4 5329.8 5329.8 62092.1 207684.0 11.7 39.0 

5 5115.8 5115.8 59307.5 207684.0 11.6 40.6 
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Table 5.15: The FOM Comparison of Fission Rate 

 

Depletion Cycle 

FOM SUBSPACE Speedup 

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal 

No depletion 3066.1 3880.5 33229.4 207684.0 10.8 53.5 

1 3066.1 5068.5 29578.0 207684.0 9.6 41.0 

2 2794.2 4619.0 27381.6 207684.0 9.8 45.0 

3 2614.7 4322.2 16814.3 207684.0 6.4 48.1 

4 1918.7 5329.8 15523.0 207684.0 8.1 39.0 

5 1841.7 5115.8 14826.9 207684.0 8.1 40.6 
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Table 5.16: The FOM Comparison of Capture Rate 

 

Depletion Cycle 

FOM SUBSPACE Speedup 

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal 

No depletion 620.9 5068.5 12980.2 207684.0 20.9 41.0 

1 563.2 5068.5 11553.9 207684.0 20.5 41.0 

2 513.2 4619.0 10695.9 207684.0 20.8 45.0 

3 437.6 5883.0 9458.0 207684.0 21.6 35.3 

4 396.4 5329.8 6899.1 207684.0 17.4 39.0 

5 380.5 5115.8 6589.7 207684.0 17.3 40.6 
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Table 5.17: The FOM Comparison of Scattering Rate 

 

Depletion Cycle 

FOM SUBSPACE Speedup 

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal 

No depletion 6898.7 5068.5 92304.0 207684.0 13.4 41.0 

1 6898.7 5068.5 82161.1 207684.0 11.9 41.0 

2 6287.0 6287.0 76059.9 207684.0 12.1 33.0 

3 5883.0 5883.0 67257.2 207684.0 11.4 35.3 

4 5329.8 5329.8 62092.1 207684.0 11.7 39.0 

5 5115.8 5115.8 59307.5 207684.0 11.6 40.6 
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Fig. 5.13: FOM Speedup of Capture through Depletion  

 

 

Fig. 5.14: FOM Speedup of Flux through Depletion  
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Fig. 5.15: FOM Speedup of Fission through Depletion  

 

 

Fig. 5.16: FOM Speedup of Scattering through Depletion  

 



www.manaraa.com

136 
 

CHAPTER 6 

CONCLUSION 

6.1 Summary and Conclusions  

The ultimate purpose of this work is to develop a mathematically-justified, computationally-

efficient,
 
and massively-parallelized framework for elucidating the coupling between Monte 

Carlo and
 
deterministic models. Up to date, the following objectives have been successfully 

accomplished:  

a) Accelerate the convergence of
 
Monte Carlo calculations via enhanced biasing methods;  

b) Enhancing the accuracy and efficiency of
 
coupled Monte Carlo-deterministic calculations 

for reactor analysis;  

c) Determination of energy-collapsed
 

cross-sections from Monte Carlo solutions for 

deterministic methods; 

In this work, two new variants of hybrid Monte Carlo-deterministic GVR techniques are 

presented: The SUBSPACE and Gaussian Process (GP). In SUBSPACE method, the 

correlations between the various single-response adjoint-based weight-window maps are 

identified and determined. The correlations describe a set of pseudo responses whose number 

is much smaller than the number of original responses.  

By biasing the Monte Carlo particles towards the pseudo responses, noticeable computational 

savings could be achieved. Meanwhile, as an extension of the SUBSPACE method, GP 



www.manaraa.com

137 
 

method takes advantage of the correlations that exist between the variances for the various 

responses by treating them as Gaussian processes.  

Numerical experiments are conducted to assess the performances of the proposed hybrid 

methods. Preliminary fixed source simulations are performed on both assembly level and 

core level. The SUBSPACE method is compared to the FW-CADIS method implemented in 

MAVRIC sequence of the SCALE code system and showed a performance that is more 

favorable. The same comparison is conducted with the GP method. The obtained results 

indicate that the performance of the GP method and the SUBSPACE method is comparable. 

Furthermore, the SUBSPACE method is extended to address k-eigenvalue calculations for 

reactor analysis. The method is tested and compared to the FW-CADIS method on a 3-D 

quarter-core model, showing significant computational savings and a speed-up up to 10 times 

over the FW-CADIS. It is expected with more complicated geometries and more 

generalization of the pseudo responses construction, one can see more correlations between 

the weight windows, and hence more computational saving could be achieved.  

The proposed hybrid methods are specifically developed for the purpose of accelerating 

actual reactor physics calculation. Therefore, the applicability of the SUBSPACE method is 

examined for cross section functionalization and depletion on assembly level.  

Significant speedups are obtained comparing to the analog Monte Carlo simulations under 

different core conditions. 
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6.2 Topics for Future Research 

In future, these computational savings could render the generation of sensitivity information 

of responses with respect to cross-sections and the propagation of cross-sections uncertainties 

through Monte Carlo-based models. It is important to note here that while hybrid methods 

can improve the convergence of MC simulation, a single order of magnitude speedup over 

analog methods is not expected to render MC models competitive with deterministic methods 

for routine reactor physics calculations. Therefore, investigations on the use of the GPT-free 

methodology are recommended to reduce the computational cost required to generate all the 

depletion and branch cases. Based on recent results of applying GPT-free to a realistic 

assembly models, another two orders of magnitude speed up could be expected, since the 

GPT-free methodology allows one to directly calculate the change in the few-group cross-

sections due to changes in core parameters without having to re-execute the MC model. 

The following topics are recommended for future research: 

Sensitivity Analysis 

Generate a SUBSPACE-based sensitivity matrix representing the first order derivatives of 

the multi-response weight-window map with respect to all input data variations. This can be 

achieved via an ESM-based matrix-free method, involving both the forward and adjoint DT 

models, with the matrix representing the unknown sensitivity matrix and the vector 

representing random input data and output responses variations. The resulting SUBSPACE 
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sensitivity matrix can then be used to accelerate not only reference MC calculations, but also 

the associated sensitivity analysis calculations; 

Uncertainty Quantification 

Propagate uncertainties of basic input data by perturbing them along SUBSPACEs consistent 

with their a prior uncertainty information; SUBSPACEs are to be obtained via matrix 

revealing decompositions;  

Monte Carlo Inverse Analysis 

With both prior input data uncertainty and determined sensitivity information, complete 

model inversion to adjust nuclear data to account for the observed discrepancies between 

predictions and measurements of core attributes. 
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APPENDIX 

 

Let I JΨ  represent a matrix as defined in the paper. Let   be a user-defined error 

tolerance. The matrix Ψ  could be decomposed into two matrices, i.e., r I r Ψ Ψ Ψ , where 

T

r Ψ ΨQQ  has rank r and   T

I r  Ψ Ψ I QQ  has rank I r  such that 
J rQ  is a 

matrix with orthonormal columns. With special requirements on the choice of the matrix Q , 

one can use rΨ  to approximate Ψ  by upper-bounding the error resulting from I rΨ . In 

particular, one can prove with high probability that:  

 T  Ψ I QQ  

The rank r would then be defined as the minimum integer that satisfies the above criterion for 

a given user-defined tolerance. In most engineering problems, the tolerance could be selected 

to match the precision of the calculations. In deterministic calculations, the tolerance could 

be matched to the truncation errors induced by the numerical scheme employed. In 

probabilistic calculations, a much higher tolerance should be employed, since in most 

practical situations, the statistical uncertainties rendered by the models are much higher than 

the truncation errors. Typical examples are: 810   for deterministic calculations and 

310   for probabilistic calculations.  
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The following algorithm could be employed to determine the rank [11]: 

1. Pick a small integer s, e.g. 10s   is suitable for most practical calculations. 

2. Generate s random vectors  
1

s

j j



. 

3. Calculate:  
1

s
T

j j j
w 


Ψ . 

4. Given a user-defined tolerance  . 

5. Given an estimate of the rank 0r , generate 0r  random vectors   0

1

r

j j



 

6. Calculate:   0

1

r
T

j j j
z 


Ψ . 

7. Form an orthonormal matrix 0J r
Q  such that:  

01R( ) span ,..., rz zQ  . This could be 

done via a Gram-Schmidt orthogonalization procedure. 

8. Calculate:   1
1,..., 1

max
s

T

j j
j s j

w 
 

  I QQ . 

9. If 1

2
10  


 , then the rank 0r  does not satisfy the tolerance  ; increase 0r  and return 

to step 6 until the exact rank is identified rex. 

 

Note that the only requirement for this algorithm is the evaluation of the matrix-vector 

product which requires the execution of the adjoint model. This algorithm requires rex adjoint 

model evaluations. Notice that all steps required to identify the rank are simple vector 

manipulations which could be done in a script outside the code; the only requirement is the 

access to the importance map calculated by the adjoint model.  


